935 resultados para Computer algorithms.
Resumo:
Organizations executing similar business processes need to understand the differences and similarities in activities performed across work environments. Presently, research interest is directed towards the potential of visualization for the display of process models, to support users in their analysis tasks. Although recent literature in process mining and comparison provide several methods and algorithms to perform process and log comparison, few contributions explore novel visualization approaches. This paper analyses process comparison from a design perspective, providing some practical visualization techniques as anal- ysis solutions (/to support process analysis). The design of the visual comparison has been tackled through three different points of view: the general model, the projected model and the side-by-side comparison in order to support the needs of business analysts. A case study is presented showing the application of process mining and visualization techniques to patient treatment across two Australian hospitals.
Resumo:
The research reported here addresses the problem of detecting and tracking independently moving objects from a moving observer in real-time, using corners as object tokens. Corners are detected using the Harris corner detector, and local image-plane constraints are employed to solve the correspondence problem. The approach relaxes the restrictive static-world assumption conventionally made, and is therefore capable of tracking independently moving and deformable objects. Tracking is performed without the use of any 3-dimensional motion model. The technique is novel in that, unlike traditional feature-tracking algorithms where feature detection and tracking is carried out over the entire image-plane, here it is restricted to those areas most likely to contain-meaningful image structure. Two distinct types of instantiation regions are identified, these being the “focus-of-expansion” region and “border” regions of the image-plane. The size and location of these regions are defined from a combination of odometry information and a limited knowledge of the operating scenario. The algorithms developed have been tested on real image sequences taken from typical driving scenarios. Implementation of the algorithm using T800 Transputers has shown that near-linear speedups are achievable, and that real-time operation is possible (half-video rate has been achieved using 30 processing elements).
Resumo:
The research reported here addresses the problem of detecting and tracking independently moving objects from a moving observer in real time, using corners as object tokens. Local image-plane constraints are employed to solve the correspondence problem removing the need for a 3D motion model. The approach relaxes the restrictive static-world assumption conventionally made, and is therefore capable of tracking independently moving and deformable objects. The technique is novel in that feature detection and tracking is restricted to areas likely to contain meaningful image structure. Feature instantiation regions are defined from a combination of odometry informatin and a limited knowledge of the operating scenario. The algorithms developed have been tested on real image sequences taken from typical driving scenarios. Preliminary experiments on a parallel (transputer) architecture indication that real-time operation is achievable.
Resumo:
This paper reviews a variety of advanced signal processing algorithms that have been developed at the University of Southampton as part of the Prometheus (Programme for European traffic flow with highest efficiency and unprecedented safety) programme to achieve an intelligent driver warning system (IDWS). The IDWS includes the detection of road edges, lanes, obstacles and their tracking and identification, estimates of time to collision, and behavioural modelling of drivers for a variety of scenarios. The underlying algorithms are briefly discussed in support of the IDWS.
Resumo:
This paper reviews a variety of advanced signal processing algorithms that have been developed at the University of Southampton as part of the Prometheus (PROgraMme for European Traffic flow with Highest Efficiency and Unprecedented Safety) research programme to achieve an intelligent driver warning system (IDWS). The IDWS includes: visual detection of both generic obstacles and other vehicles, together with their tracking and identification, estimates of time to collision and behavioural modelling of drivers for a variety of scenarios. These application areas are used to show the applicability of neurofuzzy techniques to the wide range of problems required to support an IDWS, and for future fully autonomous vehicles.
Resumo:
Traditional text classification technology based on machine learning and data mining techniques has made a big progress. However, it is still a big problem on how to draw an exact decision boundary between relevant and irrelevant objects in binary classification due to much uncertainty produced in the process of the traditional algorithms. The proposed model CTTC (Centroid Training for Text Classification) aims to build an uncertainty boundary to absorb as many indeterminate objects as possible so as to elevate the certainty of the relevant and irrelevant groups through the centroid clustering and training process. The clustering starts from the two training subsets labelled as relevant or irrelevant respectively to create two principal centroid vectors by which all the training samples are further separated into three groups: POS, NEG and BND, with all the indeterminate objects absorbed into the uncertain decision boundary BND. Two pairs of centroid vectors are proposed to be trained and optimized through the subsequent iterative multi-learning process, all of which are proposed to collaboratively help predict the polarities of the incoming objects thereafter. For the assessment of the proposed model, F1 and Accuracy have been chosen as the key evaluation measures. We stress the F1 measure because it can display the overall performance improvement of the final classifier better than Accuracy. A large number of experiments have been completed using the proposed model on the Reuters Corpus Volume 1 (RCV1) which is important standard dataset in the field. The experiment results show that the proposed model has significantly improved the binary text classification performance in both F1 and Accuracy compared with three other influential baseline models.
Resumo:
Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named “Hybridized Nash-Pareto games”. Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with civil aircraft and UAV, UCAV systems are implemented numerically and discussed. Applications of increasing optimization complexity are presented as well as two hands-on test cases problems. These examples focus on aeronautical applications and will be useful to the practitioner in the laboratory or in industrial design environments. The evolutionary methods coupled with games presented in this volume can be applied to other areas including surface and marine transport, structures, biomedical engineering, renewable energy and environmental problems.
Resumo:
Affect is an important feature of multimedia content and conveys valuable information for multimedia indexing and retrieval. Most existing studies for affective content analysis are limited to low-level features or mid-level representations, and are generally criticized for their incapacity to address the gap between low-level features and high-level human affective perception. The facial expressions of subjects in images carry important semantic information that can substantially influence human affective perception, but have been seldom investigated for affective classification of facial images towards practical applications. This paper presents an automatic image emotion detector (IED) for affective classification of practical (or non-laboratory) data using facial expressions, where a lot of “real-world” challenges are present, including pose, illumination, and size variations etc. The proposed method is novel, with its framework designed specifically to overcome these challenges using multi-view versions of face and fiducial point detectors, and a combination of point-based texture and geometry. Performance comparisons of several key parameters of relevant algorithms are conducted to explore the optimum parameters for high accuracy and fast computation speed. A comprehensive set of experiments with existing and new datasets, shows that the method is effective despite pose variations, fast, and appropriate for large-scale data, and as accurate as the method with state-of-the-art performance on laboratory-based data. The proposed method was also applied to affective classification of images from the British Broadcast Corporation (BBC) in a task typical for a practical application providing some valuable insights.
Resumo:
This paper presents a novel path planning method for minimizing the energy consumption of an autonomous underwater vehicle subjected to time varying ocean disturbances and forecast model uncertainty. The algorithm determines 4-Dimensional path candidates using Nonlinear Robust Model Predictive Control (NRMPC) and solutions optimised using A*-like algorithms. Vehicle performance limits are incorporated into the algorithm with disturbances represented as spatial and temporally varying ocean currents with a bounded uncertainty in their predictions. The proposed algorithm is demonstrated through simulations using a 4-Dimensional, spatially distributed time-series predictive ocean current model. Results show the combined NRMPC and A* approach is capable of generating energy-efficient paths which are resistant to both dynamic disturbances and ocean model uncertainty.
Resumo:
The proliferation of the web presents an unsolved problem of automatically analyzing billions of pages of natural language. We introduce a scalable algorithm that clusters hundreds of millions of web pages into hundreds of thousands of clusters. It does this on a single mid-range machine using efficient algorithms and compressed document representations. It is applied to two web-scale crawls covering tens of terabytes. ClueWeb09 and ClueWeb12 contain 500 and 733 million web pages and were clustered into 500,000 to 700,000 clusters. To the best of our knowledge, such fine grained clustering has not been previously demonstrated. Previous approaches clustered a sample that limits the maximum number of discoverable clusters. The proposed EM-tree algorithm uses the entire collection in clustering and produces several orders of magnitude more clusters than the existing algorithms. Fine grained clustering is necessary for meaningful clustering in massive collections where the number of distinct topics grows linearly with collection size. These fine-grained clusters show an improved cluster quality when assessed with two novel evaluations using ad hoc search relevance judgments and spam classifications for external validation. These evaluations solve the problem of assessing the quality of clusters where categorical labeling is unavailable and unfeasible.
Resumo:
Robustness to variations in environmental conditions and camera viewpoint is essential for long-term place recognition, navigation and SLAM. Existing systems typically solve either of these problems, but invariance to both remains a challenge. This paper presents a training-free approach to lateral viewpoint- and condition-invariant, vision-based place recognition. Our successive frame patch-tracking technique infers average scene depth along traverses and automatically rescales views of the same place at different depths to increase their similarity. We combine our system with the condition-invariant SMART algorithm and demonstrate place recognition between day and night, across entire 4-lane-plus-median-strip roads, where current algorithms fail.
Resumo:
Preface The 9th Australasian Conference on Information Security and Privacy (ACISP 2004) was held in Sydney, 13–15 July, 2004. The conference was sponsored by the Centre for Advanced Computing – Algorithms and Cryptography (ACAC), Information and Networked Security Systems Research (INSS), Macquarie University and the Australian Computer Society. The aims of the conference are to bring together researchers and practitioners working in areas of information security and privacy from universities, industry and government sectors. The conference program covered a range of aspects including cryptography, cryptanalysis, systems and network security. The program committee accepted 41 papers from 195 submissions. The reviewing process took six weeks and each paper was carefully evaluated by at least three members of the program committee. We appreciate the hard work of the members of the program committee and external referees who gave many hours of their valuable time. Of the accepted papers, there were nine from Korea, six from Australia, five each from Japan and the USA, three each from China and Singapore, two each from Canada and Switzerland, and one each from Belgium, France, Germany, Taiwan, The Netherlands and the UK. All the authors, whether or not their papers were accepted, made valued contributions to the conference. In addition to the contributed papers, Dr Arjen Lenstra gave an invited talk, entitled Likely and Unlikely Progress in Factoring. This year the program committee introduced the Best Student Paper Award. The winner of the prize for the Best Student Paper was Yan-Cheng Chang from Harvard University for his paper Single Database Private Information Retrieval with Logarithmic Communication. We would like to thank all the people involved in organizing this conference. In particular we would like to thank members of the organizing committee for their time and efforts, Andrina Brennan, Vijayakrishnan Pasupathinathan, Hartono Kurnio, Cecily Lenton, and members from ACAC and INSS.
Resumo:
Emergency Response Teams increasingly use interactive technology to help manage information and communications. The challenge is to maintain a high situation awareness for different interactive devices sizes. This research specifically compared a handheld interactive device in the form of an iPad with a large interactive multi-touch tabletop. A search and rescue inspired simulator was designed to test operator situation awareness for the two sized devices. The results show that operators had better situation awareness on the tabletop device when the operation related to detecting of moving targets, searching target locations, distinguishing target types, and comprehending displayed information.
Resumo:
The efficient computation of matrix function vector products has become an important area of research in recent times, driven in particular by two important applications: the numerical solution of fractional partial differential equations and the integration of large systems of ordinary differential equations. In this work we consider a problem that combines these two applications, in the form of a numerical solution algorithm for fractional reaction diffusion equations that after spatial discretisation, is advanced in time using the exponential Euler method. We focus on the efficient implementation of the algorithm on Graphics Processing Units (GPU), as we wish to make use of the increased computational power available with this hardware. We compute the matrix function vector products using the contour integration method in [N. Hale, N. Higham, and L. Trefethen. Computing Aα, log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal., 46(5):2505–2523, 2008]. Multiple levels of preconditioning are applied to reduce the GPU memory footprint and to further accelerate convergence. We also derive an error bound for the convergence of the contour integral method that allows us to pre-determine the appropriate number of quadrature points. Results are presented that demonstrate the effectiveness of the method for large two-dimensional problems, showing a speedup of more than an order of magnitude compared to a CPU-only implementation.
Resumo:
Bitboards allow the efficient encoding of games for computer play and the application of fast bitwiseparallel algorithms for common game-related operations. This article describes: (1) a selection of bitboard techniques including an introduction to bitboards and bitwise operations; (2) a classification scheme that distinguishes filter, query and update methods, and; (3) a sampling of bitboard algorithms for a range of games other than chess, with notes on their performance and practical application.