957 resultados para Computer Game Testing
Resumo:
A computer-aided method to improve the thickness uniformity attainable when coating multiple substrates inside a thermal evaporation physical vapor deposition unit is presented. The study is developed for the classical spherical (dome-shaped) calotte and also for a plane sector reversible holder setup. This second arrangement is very useful for coating both sides of the substrate, such as antireflection multilayers on lenses. The design of static correcting shutters for both kinds of configurations is also discussed. Some results of using the method are presented as an illustration.
Resumo:
INTRODUCTION: Quantitative sensory testing (QST) is widely used in human research to investigate the integrity of the sensory function in patients with pain of neuropathic origin, or other causes such as low back pain. Reliability of QST has been evaluated on both sides of the face, hands and feet as well as on the trunk (Th3-L3). In order to apply these tests on other body-parts such as the lower lumbar spine, it is important first to establish reliability on healthy individuals. The aim of this study was to investigate intra-rater reliability of thermal QST in healthy adults, on two sites within the L5 dermatome of the lumbar spine and lower extremity. METHODS: Test-retest reliability of thermal QST was determined at the L5-level of the lumbar spine and in the same dermatome on the lower extremity in 30 healthy persons under 40 years of age. Results were analyzed using descriptive statistics and intraclass correlation coefficient (ICC). Values were compared to normative data, using Z-transformation. RESULTS: Mean intraindividual differences were small for cold and warm detection thresholds but larger for pain thresholds. ICC values showed excellent reliability for warm detection and heat pain threshold, good-to-excellent reliability for cold pain threshold and fair-to-excellent reliability for cold detection threshold. ICC had large ranges of confidence interval (95%). CONCLUSION: In healthy adults, thermal QST on the lumbar spine and lower extremity demonstrated fair-to-excellent test-retest reliability.
Resumo:
The purpose of the State of Iowa’s drug testing law—Iowa Code Section 730.5 (& Administrative Code Section 641)—is to enhance worker safety, by creating workplaces that are free of drugs and substance abuse. One tool available to private sector employers is drug testing (inclusive of alcohol testing), that often is coupled with educational efforts as part of a comprehensive drug-free workplace program. Each employer must first decide if drug and/or alcohol testing is appropriate for them. Under Iowa law, workplace drug or alcohol testing is optional for private sector employers. Federal laws or regulations governing drug or alcohol testing supersede state law in Iowa.
Resumo:
The report of adulterated anhydrous ammonia did not completely prevent the manufacture of methamphetamine. The amount of the methamphetamine manufactured using the adulterated ammonia was consistently very low. Although clandestine laboratory "field-like" reaction conditions were mimicked for purposes of these tests it should be noted that no attempts were made to distill the adulterated anhydrous ammonia.
Resumo:
Both structural and dynamical properties of 7Li at 470 and 843 K are studied by molecular dynamics simulation and the results are comapred with the available experimental data. Two effective interatomic potentials are used, i.e., a potential derived from the Ashcroft pseudopotential [Phys. Lett. 23, 48 (1966)] and a recently proposed potential deduced from the neutral pseudoatom method [J. Phys.: Condens. Matter 5, 4283 (1993)]. Although the shape of the two potential functions is very different, the majority of the properties calculated from them are very similar. The differences among the results using the two interaction models are carefully discussed.
Resumo:
The purpose of the State of Iowa’s drug testing law—Iowa Code Section 730.5 (& Administrative Code Section 641)—is to enhance worker safety, by creating workplaces that are free of drugs and substance abuse. One tool available to private sector employers is drug testing (inclusive of alcohol testing), that often is coupled with educational efforts as part of a comprehensive drug-free workplace program. Each employer must first decide if drug and/or alcohol testing is appropriate for them. Under Iowa law, workplace drug or alcohol testing is optional for private sector employers. Federal laws or regulations governing drug or alcohol testing supersede state law in Iowa.
Resumo:
Preface The starting point for this work and eventually the subject of the whole thesis was the question: how to estimate parameters of the affine stochastic volatility jump-diffusion models. These models are very important for contingent claim pricing. Their major advantage, availability T of analytical solutions for characteristic functions, made them the models of choice for many theoretical constructions and practical applications. At the same time, estimation of parameters of stochastic volatility jump-diffusion models is not a straightforward task. The problem is coming from the variance process, which is non-observable. There are several estimation methodologies that deal with estimation problems of latent variables. One appeared to be particularly interesting. It proposes the estimator that in contrast to the other methods requires neither discretization nor simulation of the process: the Continuous Empirical Characteristic function estimator (EGF) based on the unconditional characteristic function. However, the procedure was derived only for the stochastic volatility models without jumps. Thus, it has become the subject of my research. This thesis consists of three parts. Each one is written as independent and self contained article. At the same time, questions that are answered by the second and third parts of this Work arise naturally from the issues investigated and results obtained in the first one. The first chapter is the theoretical foundation of the thesis. It proposes an estimation procedure for the stochastic volatility models with jumps both in the asset price and variance processes. The estimation procedure is based on the joint unconditional characteristic function for the stochastic process. The major analytical result of this part as well as of the whole thesis is the closed form expression for the joint unconditional characteristic function for the stochastic volatility jump-diffusion models. The empirical part of the chapter suggests that besides a stochastic volatility, jumps both in the mean and the volatility equation are relevant for modelling returns of the S&P500 index, which has been chosen as a general representative of the stock asset class. Hence, the next question is: what jump process to use to model returns of the S&P500. The decision about the jump process in the framework of the affine jump- diffusion models boils down to defining the intensity of the compound Poisson process, a constant or some function of state variables, and to choosing the distribution of the jump size. While the jump in the variance process is usually assumed to be exponential, there are at least three distributions of the jump size which are currently used for the asset log-prices: normal, exponential and double exponential. The second part of this thesis shows that normal jumps in the asset log-returns should be used if we are to model S&P500 index by a stochastic volatility jump-diffusion model. This is a surprising result. Exponential distribution has fatter tails and for this reason either exponential or double exponential jump size was expected to provide the best it of the stochastic volatility jump-diffusion models to the data. The idea of testing the efficiency of the Continuous ECF estimator on the simulated data has already appeared when the first estimation results of the first chapter were obtained. In the absence of a benchmark or any ground for comparison it is unreasonable to be sure that our parameter estimates and the true parameters of the models coincide. The conclusion of the second chapter provides one more reason to do that kind of test. Thus, the third part of this thesis concentrates on the estimation of parameters of stochastic volatility jump- diffusion models on the basis of the asset price time-series simulated from various "true" parameter sets. The goal is to show that the Continuous ECF estimator based on the joint unconditional characteristic function is capable of finding the true parameters. And, the third chapter proves that our estimator indeed has the ability to do so. Once it is clear that the Continuous ECF estimator based on the unconditional characteristic function is working, the next question does not wait to appear. The question is whether the computation effort can be reduced without affecting the efficiency of the estimator, or whether the efficiency of the estimator can be improved without dramatically increasing the computational burden. The efficiency of the Continuous ECF estimator depends on the number of dimensions of the joint unconditional characteristic function which is used for its construction. Theoretically, the more dimensions there are, the more efficient is the estimation procedure. In practice, however, this relationship is not so straightforward due to the increasing computational difficulties. The second chapter, for example, in addition to the choice of the jump process, discusses the possibility of using the marginal, i.e. one-dimensional, unconditional characteristic function in the estimation instead of the joint, bi-dimensional, unconditional characteristic function. As result, the preference for one or the other depends on the model to be estimated. Thus, the computational effort can be reduced in some cases without affecting the efficiency of the estimator. The improvement of the estimator s efficiency by increasing its dimensionality faces more difficulties. The third chapter of this thesis, in addition to what was discussed above, compares the performance of the estimators with bi- and three-dimensional unconditional characteristic functions on the simulated data. It shows that the theoretical efficiency of the Continuous ECF estimator based on the three-dimensional unconditional characteristic function is not attainable in practice, at least for the moment, due to the limitations on the computer power and optimization toolboxes available to the general public. Thus, the Continuous ECF estimator based on the joint, bi-dimensional, unconditional characteristic function has all the reasons to exist and to be used for the estimation of parameters of the stochastic volatility jump-diffusion models.
Resumo:
The aims of this study were to determine whether responses in myocardial blood flow (MBF) to the cold pressor testing (CPT) method noninvasively with PET correlate with an established and validated index of flow-dependent coronary vasomotion on quantitative angiography. METHODS: Fifty-six patients (57 +/- 6 y; 16 with hypertension, 10 with hypercholesterolemia, 8 smokers, and 22 without coronary risk factors) with normal coronary angiograms were studied. Biplanar end-diastolic images of a selected proximal segment of the left anterior descending artery (LAD) (n = 27) or left circumflex artery (LCx) (n = 29) were evaluated with quantitative coronary angiography in order to determine the CPT-induced changes of epicardial luminal area (LA, mm(2)). Within 20 d of coronary angiography, MBF in the LAD, LCx, and right coronary artery territory was measured with (13)N-ammonia and PET at baseline and during CPT. RESULTS: CPT induced on both study days comparable percent changes in the rate x pressure product (%DeltaRPP, 37% +/- 13% and 40% +/- 17%; P = not significant [NS]). For the entire study group, the epicardial LA decreased from 5.07 +/- 1.02 to 4.88 +/- 1.04 mm(2) (DeltaLA, -0.20 +/- 0.89 mm(2)) or by -2.19% +/- 17%, while MBF in the corresponding epicardial vessel segment increased from 0.76 +/- 0.16 to 1.03 +/- 0.33 mL x min(-1) x g(-1) (DeltaMBF, 0.27 +/- 0.25 mL x min(-1) x g(-1)) or 36% +/- 31% (P <or= 0.0001). However, in normal controls without coronary risk factors (n = 22), the epicardial LA increased from 5.01 +/- 1.07 to 5.88 +/- 0.89 mm(2) (19.06% +/- 8.9%) and MBF increased from 0.77 +/- 0.16 to 1.34 +/- 0.34 mL x min(-1) x g(-1) (74.08% +/- 23.5%) during CPT, whereas patients with coronary risk factors (n = 34) revealed a decrease of epicardial LA from 5.13 +/- 1.48 to 4.24 +/- 1.12 mm(2) (-15.94% +/- 12.2%) and a diminished MBF increase (from 0.76 +/- 0.20 to 0.83 +/- 0.25 mL x min(-1) x g(-1) or 10.91% +/- 19.8%) as compared with controls (P < 0.0001, respectively), despite comparable changes in the RPP (P = NS). In addition, there was a significant correlation (r = 0.87; P <or= 0.0001) between CPT-related percent changes in LA on quantitative angiography and in MBF as measured with PET. CONCLUSION: The observed close correlation between an angiographically established parameter of flow-dependent and, most likely, endothelium-mediated coronary vasomotion and PET-measured MBF further supports the validity and value of MBF responses to CPT as a noninvasively available index of coronary circulatory function.
Resumo:
Self- and cross-velocity correlation functions and related transport coefficients of molten salts are studied by molecular-dynamics simulation. Six representative systems are considered, i.e., NaCl and KCl alkali halides, CuCl and CuBr noble-metal halides, and SrCl2 and ZnCl2 divalent metal-ion halides. Computer simulation results are compared with experimental self-diffusion coefficients and electrical conductivities. Special attention is paid to dynamic cross correlations and their dependence on the Coulomb interactions as well as on the size and mass differences between anions and cations.
Resumo:
Purpose. The aim of this study was to identify new surfactants with low skin irritant properties for use in pharmaceutical and cosmetic formulations, employing cell culture as an alternative method to in vivo testing. In addition, we sought to establish whether potential cytotoxic properties were related to the size of the counterions bound to the surfactants. Methods. Cytotoxicity was assessed in the mouse fibroblast cell line 3T6, and the human keratinocyte cell line NCTC 2544, using the MTT assay and uptake of the vital dye neutral red 24 h after dosing (NRU). Results. Lysine-derivative surfactants showed higher IC50s than did commercial anionic irritant compounds such as sodium dodecyl sulphate, proving to be no more harmful than amphoteric betaines. The aggressiveness of the surfactants depended upon the size of their constituent counterions: surfactants associated with lighter counterions showed a proportionally higher aggressivity than those with heavier ones. Conclusions. Synthetic lysine-derivative anionic surfactants are less irritant than commercial surfactants such as sodium dodecyl sulphate and Hexadecyltrimethylammonium bromide and are similar to Betaines. These surfactants may offer promising applications in pharmaceutical and cosmetic preparations, representing a potential alternative to commercial anionic surfactants as a result of their low irritancy potential.
Resumo:
The present research project was designed to identify the typical Iowa material input values that are required by the Mechanistic-Empirical Pavement Design Guide (MEPDG) for the Level 3 concrete pavement design. It was also designed to investigate the existing equations that might be used to predict Iowa pavement concrete for the Level 2 pavement design. In this project, over 20,000 data were collected from the Iowa Department of Transportation (DOT) and other sources. These data, most of which were concrete compressive strength, slump, air content, and unit weight data, were synthesized and their statistical parameters (such as the mean values and standard variations) were analyzed. Based on the analyses, the typical input values of Iowa pavement concrete, such as 28-day compressive strength (f’c), splitting tensile strength (fsp), elastic modulus (Ec), and modulus of rupture (MOR), were evaluated. The study indicates that the 28-day MOR of Iowa concrete is 646 + 51 psi, very close to the MEPDG default value (650 psi). The 28-day Ec of Iowa concrete (based only on two available data of the Iowa Curling and Warping project) is 4.82 + 0.28x106 psi, which is quite different from the MEPDG default value (3.93 x106 psi); therefore, the researchers recommend re-evaluating after more Iowa test data become available. The drying shrinkage (εc) of a typical Iowa concrete (C-3WR-C20 mix) was tested at Concrete Technology Laboratory (CTL). The test results show that the ultimate shrinkage of the concrete is about 454 microstrain and the time for the concrete to reach 50% of ultimate shrinkage is at 32 days; both of these values are very close to the MEPDG default values. The comparison of the Iowa test data and the MEPDG default values, as well as the recommendations on the input values to be used in MEPDG for Iowa PCC pavement design, are summarized in Table 20 of this report. The available equations for predicting the above-mentioned concrete properties were also assembled. The validity of these equations for Iowa concrete materials was examined. Multiple-parameters nonlinear regression analyses, along with the artificial neural network (ANN) method, were employed to investigate the relationships among Iowa concrete material properties and to modify the existing equations so as to be suitable for Iowa concrete materials. However, due to lack of necessary data sets, the relationships between Iowa concrete properties were established based on the limited data from CP Tech Center’s projects and ISU classes only. The researchers suggest that the resulting relationships be used by Iowa pavement design engineers as references only. The present study furthermore indicates that appropriately documenting concrete properties, including flexural strength, elastic modulus, and information on concrete mix design, is essential for updating the typical Iowa material input values and providing rational prediction equations for concrete pavement design in the future.
Resumo:
An ammonium chloride procedure was used to prepare a bacterial pellet from positive blood cultures, which was used for direct inoculation of VITEK 2 cards. Correct identification reached 99% for Enterobacteriaceae and 74% for staphylococci. For antibiotic susceptibility testing, very major and major errors were 0.1 and 0.3% for Enterobacteriaceae, and 0.7 and 0.1% for staphylococci, respectively. Thus, bacterial pellets prepared with ammonium chloride allow direct inoculation of VITEK cards with excellent accuracy for Enterobacteriaceae and a lower accuracy for staphylococci.