927 resultados para Computational Docking
Resumo:
Neutrophil gelatinase associated lipocalin (NGAL) protein is attracting a great interest because of its antibacterial properties played upon modulating iron content in competition against iron acquisition processes developed by pathogenic bacteria that bind selective ferric iron chelators (siderophores). Besides its known high affinity to enterobactin, the most important siderophore, it has been recently shown that NGAL is able to bind Fe(III) coordinated by catechols. The selective binding of Fe(III)-catechol ligands to NGAL is here studied by using iron coordination structures with one, two, and three catecholate ligands. By means of a computational approach that consists of B3LYP/6-311G(d,p) quantum calculations for geometries, electron properties and electrostatic potentials of ligands, protein–ligand flexible docking calculations, analyses of protein–ligand interfaces, and Poisson–Boltzmann electrostatic potentials for proteins, we study the binding of iron catecholate ligands to NGAL as a central member of the lipocalin family of proteins. This approach provides a modeling basis for exploring in silico the selective binding of iron catecholates ligands giving a detailed picture of their interactions in terms of electrostatic effects and a network of hydrogen bonds in the protein binding pocket.
Resumo:
Computational homogenization by means of the finite element analysis of a representative volume element of the microstructure is used to simulate the deformation of nanostructured Ti. The behavior of each grain is taken into account using a single crystal elasto-viscoplastic model which includes the microscopic mechanisms of plastic deformation by slip along basal, prismatic and pyramidal systems. Two different representations of the polycrystal were used. Each grain was modeled with one cubic finite element in the first one while many cubic elements were used to represent each grain in the second one, leading to a model which includes the effect of grain shape and size in a limited number of grains due to the computational cost. Both representations were used to simulate the tensile deformation of nanostructured Ti processed by ECAP-C as well as the drawing process of nanostructured Ti billets. It was found that the first representation based in one finite element per grain led to a stiffer response in tension and was not able to predict the texture evolution during drawing because the strain gradient within each grain could not be captured. On the contrary, the second representation of the polycrystal microstructure with many finite elements per grain was able to predict accurately the deformation of nanostructured Ti.
Resumo:
In this paper, the foundations of the beta method, widely used in todays ship appendage extrapolations, are explored. The present work pretends to validate the Beta Method using experimental and computational tools. The ship used is a rounded bow tugboat with two significant appendages, namely, a midship protective structure for the propulsion system and a stern keel. The experimental and computational data was obtained through Towing Tank trials and a RANSE CFD code, respectively.
Resumo:
Reproducible research in scientic work ows is often addressed by tracking the provenance of the produced results. While this approach allows inspecting intermediate and nal results, improves understanding, and permits replaying a work ow execution, it does not ensure that the computational environment is available for subsequent executions to reproduce the experiment. In this work, we propose describing the resources involved in the execution of an experiment using a set of semantic vocabularies, so as to conserve the computational environment. We dene a process for documenting the work ow application, management system, and their dependencies based on 4 domain ontologies. We then conduct an experimental evaluation sing a real work ow application on an academic and a public Cloud platform. Results show that our approach can reproduce an equivalent execution environment of a predened virtual machine image on both computing platforms.
Resumo:
This paper is devoted to the numerical analysis of bidimensional bonded lap joints. For this purpose, the stress singularities occurring at the intersections of the adherend-adhesive interfaces with the free edges are first investigated and a method for computing both the order and the intensity factor of these singularities is described briefly. After that, a simplified model, in which the adhesive domain is reduced to a line, is derived by using an asymptotic expansion method. Then, assuming that the assembly debonding is produced by a macro-crack propagation in the adhesive, the associated energy release rate is computed. Finally, a homogenization technique is used in order to take into account a preliminary adhesive damage consisting of periodic micro-cracks. Some numerical results are presented.
Resumo:
The study of granular systems is of great interest to many fields of science and technology. The packing of particles affects to the physical properties of the granular system. In particular, the crucial influence of particle size distribution (PSD) on the random packing structure increase the interest in relating both, either theoretically or by computational methods. A packing computational method is developed in order to estimate the void fraction corresponding to a fractal-like particle size distribution.
Resumo:
Experimental diffusion data were critically assessed to develop the atomic mobility for the bcc phase of the Ti–Al–Fe system by using the DICTRA software. Good agreements were obtained from comprehensive comparisons made between the calculated and the experimental diffusion coefficients. The developed atomic mobility was then validated by well predicting the interdiffusion behavior observed from the diffusion-couple experiments in available literature.
Resumo:
Services in smart environments pursue to increase the quality of people?s lives. The most important issues when developing this kind of environments is testing and validating such services. These tasks usually imply high costs and annoying or unfeasible real-world testing. In such cases, artificial societies may be used to simulate the smart environment (i.e. physical environment, equipment and humans). With this aim, the CHROMUBE methodology guides test engineers when modeling human beings. Such models reproduce behaviors which are highly similar to the real ones. Originally, these models are based on automata whose transitions are governed by random variables. Automaton?s structure and the probability distribution functions of each random variable are determined by a manual test and error process. In this paper, it is presented an alternative extension of this methodology which avoids the said manual process. It is based on learning human behavior patterns automatically from sensor data by using machine learning techniques. The presented approach has been tested on a real scenario, where this extension has given highly accurate human behavior models,
Resumo:
The study of granular systems is of great interest to many fields of science and technology. The packing of particles affects to the physical properties of the granular system. In particular, the crucial influence of particle size distribution (PSD) on the random packing structure increase the interest in relating both, either theoretically or by computational methods. A packing computational method is developed in order to estimate the void fraction corresponding to a fractal-like particle size distribution.
Resumo:
Nonlinear analysis tools for studying and characterizing the dynamics of physiological signals have gained popularity, mainly because tracking sudden alterations of the inherent complexity of biological processes might be an indicator of altered physiological states. Typically, in order to perform an analysis with such tools, the physiological variables that describe the biological process under study are used to reconstruct the underlying dynamics of the biological processes. For that goal, a procedure called time-delay or uniform embedding is usually employed. Nonetheless, there is evidence of its inability for dealing with non-stationary signals, as those recorded from many physiological processes. To handle with such a drawback, this paper evaluates the utility of non-conventional time series reconstruction procedures based on non uniform embedding, applying them to automatic pattern recognition tasks. The paper compares a state of the art non uniform approach with a novel scheme which fuses embedding and feature selection at once, searching for better reconstructions of the dynamics of the system. Moreover, results are also compared with two classic uniform embedding techniques. Thus, the goal is comparing uniform and non uniform reconstruction techniques, including the one proposed in this work, for pattern recognition in biomedical signal processing tasks. Once the state space is reconstructed, the scheme followed characterizes with three classic nonlinear dynamic features (Largest Lyapunov Exponent, Correlation Dimension and Recurrence Period Density Entropy), while classification is carried out by means of a simple k-nn classifier. In order to test its generalization capabilities, the approach was tested with three different physiological databases (Speech Pathologies, Epilepsy and Heart Murmurs). In terms of the accuracy obtained to automatically detect the presence of pathologies, and for the three types of biosignals analyzed, the non uniform techniques used in this work lightly outperformed the results obtained using the uniform methods, suggesting their usefulness to characterize non-stationary biomedical signals in pattern recognition applications. On the other hand, in view of the results obtained and its low computational load, the proposed technique suggests its applicability for the applications under study.
Resumo:
Traumatic brain injury and spinal cord injury have recently been put under the spotlight as major causes of death and disability in the developed world. Despite the important ongoing experimental and modeling campaigns aimed at understanding the mechanics of tissue and cell damage typically observed in such events, the differentiated roles of strain, stress and their corresponding loading rates on the damage level itself remain unclear. More specifically, the direct relations between brain and spinal cord tissue or cell damage, and electrophysiological functions are still to be unraveled. Whereas mechanical modeling efforts are focusing mainly on stress distribution and mechanistic-based damage criteria, simulated function-based damage criteria are still missing. Here, we propose a new multiscale model of myelinated axon associating electrophysiological impairment to structural damage as a function of strain and strain rate. This multiscale approach provides a new framework for damage evaluation directly relating neuron mechanics and electrophysiological properties, thus providing a link between mechanical trauma and subsequent functional deficits
Resumo:
The monkey anterior intraparietal area (AIP) encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. In robotics a similar role has been played by modules that fit point cloud data to the superquadric family of shapes and its various extensions. We developed a model of shape tuning in AIP based on cosine tuning to superquadric parameters. However, the model did not fit the data well, and we also found that it was difficult to accurately reproduce these parameters using neural networks with the appropriate inputs (modelled on the caudal intraparietal area, CIP). The latter difficulty was related to the fact that there are large discontinuities in the superquadric parameters between very similar shapes. To address these limitations we adopted an alternative shape parameterization based on an Isomap nonlinear dimension reduction. The Isomap was built using gradients and curvatures of object surface depth. This alternative parameterization was low-dimensional (like superquadrics), but data-driven (similar to an alternative clustering approach that is also sometimes used in robotics) and lacked large discontinuities. Isomaps with 16 or more dimensions reproduced the AIP data fairly well. Moreover, we found that the Isomap parameters could be approximated from CIP-like input much more accurately than the superquadric parameters. We conclude that Isomaps, or perhaps alternative dimension reductions of CIP signals, provide a promising model of AIP tuning. We have now started to integrate our model with a robot hand, to explore the efficacy of Isomap shape reductions in grasp planning. Future work will consider dynamics of spike responses and integration with related visual and motor area models.