993 resultados para Coastal plants
Resumo:
Seagrasses, marine flowering plants, have a long evolutionary history but are now challenged with rapid environmental changes as a result of coastal human population pressures. Seagrasses provide key ecological services, including organic carbon production and export, nutrient cycling, sediment stabilization, enhanced biodiversity, and trophic transfers to adjacent habitats in tropical and temperate regions. They also serve as “coastal canaries,” global biological sentinels of increasing anthropogenic influences in coastal ecosystems, with large-scale losses reported worldwide. Multiple stressors, including sediment and nutrient runoff, physical disturbance, invasive species, disease, commercial fishing practices, aquaculture, overgrazing, algal blooms, and global warming, cause seagrass declines at scales of square meters to hundreds of square kilometers. Reported seagrass losses have led to increased awareness of the need for seagrass protection, monitoring, management, and restoration. However, seagrass science, which has rapidly grown, is disconnected from public awareness of seagrasses, which has lagged behind awareness of other coastal ecosystems. There is a critical need for a targeted global conservation effort that includes a reduction of watershed nutrient and sediment inputs to seagrass habitats and a targeted educational program informing regulators and the public of the value of seagrass meadows.
Resumo:
We present an analysis of extensive nutrient data sets from two river-dominated coastal ecosystems, the northern Adriatic Sea and the northern Gulf of Mexico, demonstrating significant changes in surface nutrient ratios over a period of 30 years. The silicon:nitrogen ratios have decreased, indicating increased potential for silicon limitation. The nitrogen:phosphorus and the silicon:phosphorus ratios have also changed substantially, and the coastal nutrient structures have become more balanced and potentially less limiting for phytoplankton growth. It is likely that net phytoplankton productivity increased under these conditions and was accompanied by increasing bottom water hypoxia and major changes in community species composition. These findings support the hypothesis that increasing coastal eutrophication to date may be associated with stoichiometric nutrient balance, due to increasing potential for silicon limitation and decreasing potential for nitrogen and phosphorus limitation. On a worldwide basis, coastal ecosystems adjacent to rivers influenced by anthropogenic nutrient loads may experience similar alterations.
Resumo:
Net organic metabolism (that is, the difference between primary production and respiration of organic matter) in the coastal ocean may be a significant term in the oceanic carbon budget. Historical change in the rate of this net metabolism determines the importance of the coastal ocean relative to anthropogenic perturbations of the global carbon cycle. Consideration of long-term rates of river loading of organic carbon, organic burial, chemical reactivity of land-derived organic matter, and rates of community metabolism in the coastal zone leads us to estimate that the coastal zone oxidizes about 7 × 1012 moles C/yr. The open ocean is apparently also a site of net organic oxidation (∼16 × 1012 moles C/yr). Thus organic metabolism in the ocean appears to be a source of CO2 release to the atmosphere rather than being a sink for atmospheric carbon dioxide. The small area of the coastal ocean accounts for about 30% of the net oceanic oxidation. Oxidation in the coastal zone (especially in bays and estuaries) takes on particular importance, because the input rate is likely to have been altered substantially by human activities on land.
Resumo:
Soil samples from a Louisiana Barataria Basin brackish marshes were fractionated into acid-volatile sulfides (AVS), HCl-soluble sulfur, elemental sulfur, pyrite sulfur, ester-sulfate sulfur, and carbon-bonded sulfur. Inorganic sulfur composed 13% of total sulfur in brackish marsh soil with HCl-soluble sulfur representing 63–92% of the inorganic sulfur fraction. AVS represented less than 1% of the total sulfur pool. Pyrite sulfur and elemental sulfur together accounted for 8–33% of the inorganic sulfur pool. Organic sulfur, in the forms of ester-sulfate sulfur and carbon-bonded sulfur, was the most dominant pool representing the majority of total sulfur in brackish marsh. Results were compared to values reported for fresh and salt marshes. Reported inorganic sulfur fractions were greater in adjacent marshes, constituting 24% of total sulfur in salt marsh, and 22% in freshwater marshes. Along a salinity gradient, HCl-soluble sulfur represented 78–86% of the inorganic sulfur fraction in fresh, brackish, and salt marsh. Organic sulfur in the forms of ester-sulfate sulfur and carbon-bonded sulfur was the major constituent (76–87%) of total sulfur in all marshes. Reduced sulfur species, except elemental sulfur, increased seaward along the salinity gradient. Accumulation of reduced sulfur forms through sedimentation processes was significant in marsh energy flow in fresh, brackish and salt marshes.
Resumo:
973 Project of China [2006CB701305]; "863" Project of China [2009AA12Z148]; National Natural Science Foundation of China [40971224]
Resumo:
The interactions among industrial development, land use/cover change (LUCC), and environmental effects in Changshu in the eastern coastal China were analyzed using high-resolution Landsat TM data in 1990, 1995, 2000, and 2006, socio-economic data and water environmental quality monitoring data from research institutes and governmental departments. Three phases of industrial development in Changshu were examined (i.e., the three periods of 1990 to 1995, 1995 to 2000, and 2000 to 2006). Besides industrial development and rapid urbanization, land use/cover in Changshu had changed drastically from 1990 to 2006. This change was characterized by major replacements of farmland by urban and rural settlements, artificial ponds, forested and constructed land. Industrialization, urbanization, agricultural structure adjustment, and rural housing construction were the major socio-economic driving forces of LUCC in Changshu. In addition, the annual value of ecosystem services in Changshu decreased slightly during 1990-2000, but increased significantly during 2000-2006. Nevertheless, the local environmental quality in Changshu, especially in rural areas, has not yet been improved significantly. Thus, this paper suggests an increased attention to fully realize the role of land supply in adjustment of environment-friendly industrial structure and urban-rural spatial restructuring, and translating the land management and environmental protection policies into an optimized industrial distribution and land-use pattern.
Resumo:
Aristolochic acids (AAs) are the main bioactive ingredients in the most of Aristolochia plants, which are used to make dietary supplements, slimming pills and Traditional Chinese Medicines (TCMs). Excessive ingestion of AAs can lead to serious nephropathy. Therefore, quantitative analysis and quality control for the plants containing AAs is of great importance. In this paper, capillary electrophoresis (CE) with electrochemical detection (ED) at a 33 mu m carbon fiber microdisk electrode (CFE) has been applied to detect AA-I and AA-II in Aristolochia plants. Under the optimum conditions: detection potential at 1.20 V, 2.0 x 10(-2) mol L-1 phosphate buffer solution (PBS) (pH 10.0), injection time 25 s at a height of 17 cm and separation voltage at 12.5 kV, the AA-I and AA-II were baseline separated within 5 min. Low detection limits for AA-I and AA-II were 4.0 x 10(-8) mol L-1 and 1.0 x 10(-7) mol L-1, respectively. Wide linear ranges were from 4.0 x 10(-8) mol L-1 to 1.9 x 10(-5) mol L-1 and 1.0 X 10(-7) mol L-1 to 5.0 x 10(-5) mol L-1 for AA-I and AA-II, respectively. The proposed method has been successfully applied to analyze AAs contents in plant extracts. The results indicated that the contents of AAs in each part of Aristolochia debilis Sieb. Et Zucc.
Resumo:
Eutrophication is becoming a serious problem in coastal waters in many parts of the world. It induces the phytoplankton blooms including 'Red Tides', followed by heavy economic losses to extensive aquaculture area. Some cultivated seaweeds have very high productivity and could absorb large quantities of N, P, CO2, produce large amount of O-2 and have excellent effect on decreasing eutrophication. The author believes that seaweed cultivation in large scale should be a good solution to the eutrophication problem in coastal waters. To put this idea into practice, four conditions should be fulfilled: (a) Large-scale cultivation could be conducted within the region experiencing eutrophication. (b) Fundamental scientific and technological problems for cultivation should have been solved. (c) Cultivation should not impose any harmful ecological effects. (d) Cultivation must be economically feasible and profitable. In northern China, large-scale cultivation of Laminaria japonica Aresch. has been encouraged for years to balance the negative effects from scallop cultivation. Preliminary research in recent years has shown that Gracilaria lemaneiformis (Bory) Daws. and Porphyra haitanensis Chang et Zheng are the two best candidates for this purpose along the Chinese southeast to southern coast from Fujian to Guangdong, Guangxi and Hong Kong. Gracilaria tenuistipitata var. liui Chang et Xia is promising for use in pond culture condition with shrimps and fish.
Resumo:
Environmental microbiology investigation was carried out in Jiaozhou Bay to determine the source and distribution of tetracycline-resistant bacteria and their resistance mechanisms. At least 25 species or the equivalent molecular phylogenetic taxa in 16 genera of resistant bacteria could be identified based on 16S ribosomal deoxyribonucleic acid sequence analysis. Enterobacteriaceae, Pseudomonadaceae, and Vibrionaceae constituted the majority of the typical resistant isolates. Indigenous estuarine and marine Halomonadaceae, Pseudoalteromonadaceae, Rhodobacteraceae, and Shewanellaceae bacteria also harbored tetracycline resistance. All the six resistance determinants screened, tet(A)-(E) and tet(G), could be detected, and the predominant genes were tet(A), tet(B), and tet(G). Both anthropogenic activity-related and indigenous estuarine or coastal bacteria might contribute to the tet gene reservoir, and resistant bacteria and their molecular determinants may serve as bioindicators of coastal environmental quality. Our work probably is the first identification of tet(E) in Proteus, tet(G) in Acinetobacter, tet(C) and tet(D) in Halomonas, tet(D) and tet(G) in Shewanella, and tet(B), tet(C), tet(E), and tet(G) in Roseobacter.