997 resultados para Co-feeding
Resumo:
The trans-dichlorobis(ethylenediamine)cobalt(III) chloride was synthesized in an undergraduate laboratory and its aquation reaction was carried out at different temperatures. This reaction follows pseudo-first-order kinetics and the rate constants, determined at 25, 35, 45, 55 and 70 º C, are 1.44 x 10-3; 5.14 x 10-3; 1.48 x 10-2; 4.21 x 10-2 and 2.21 x 10-1 s-1, respectively. The activation energy is 93.99 ± 2.88 kJ mol-1.
Resumo:
We present an overview of the long-term adaptation of hippocampal neurotransmission to cholinergic and GABAergic deafferentation caused by excitotoxic lesion of the medial septum. Two months after septal microinjection of 2.7 nmol a -amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), a 220% increase of GABA A receptor labelling in the hippo- campal CA3 and the hilus was shown, and also changes in hippocampal neurotransmission characterised by in vivo microdialysis and HPLC. Basal amino acid and purine extra- cellular levels were studied in control and lesioned rats. In vivo effects of 100 m M KCl perfusion and adenosine A 1 receptor blockade with 1,3-dipropyl- 8-cyclopentylxanthine (DPCPX) on their release were also investigated. In lesioned animals GABA, glutamate and glutamine basal levels were decreased and taurine, adenosine and uric acid levels increased. A similar response to KCl infusion occurred in both groups except for GABA and glutamate, which release decreased in lesioned rats. Only in lesioned rats, DPCPX increased GABA basal level and KCl-induced glutamate release, and decreased glutamate turnover. Our results evidence that an excitotoxic septal lesion leads to increased hippocampal GABA A receptors and decreased glutamate neurotransmis- sion. In this situation, a co-ordinated response of hippocampal retaliatory systems takes place to control neuron excitability.
Resumo:
LaNiO3 perovskite was modified by partial substitution of nickel by cobalt in order to increase the stability and resistance to carbon deposition during the methane CO2 reforming. The results showed that a suitable combination of precipitation and calcination steps resulted in oxides with the desired structure and with important properties for application in heterogeneous catalysis. The partial substitution of Ni by Co resulted in lower rates of conversion of both the reactants, but the catalyst stability was highly increased. The LaNi0.3Co0.7O3 catalyst, calcined at 800 ºC, was the most active under the reaction conditions.
Resumo:
The object of this work is the comparison of domain structure and off-diagonal magnetoimpedance effect in amorphous ribbons with different magnetostriction coefficient. The Co66Fe4Ni1Si15B14 and Fe80B20 samples were obtained by melt-spinning. During the quenching procedure a 0.07 T transverse magnetic field was applied to some of the samples. Domain patterns obtained by the Bitter technique confirm that the differences on the samples are related to the different anisotropy and magnetostriction coefficient, and the quenching procedure. Small changes on the anisotropy distribution and the magnetostriction coefficient can be detected by the off-diagonal impedance spectra as a consequence of the different permeability values of the samples
Resumo:
In this work the effects of time and temperature of thermal treatments under reducing atmosphere (H2) on PtRu/C catalysts for the hydrogen oxidation reaction (HOR) in the presence of CO on a proton exchange membrane fuel cell (PEMFC) single cells have been studied. It can be seen that the increase of the treatment temperature leads to an increasing sintering of the catalyst particles with reduction of the active area, although the catalyst treated at 550 ºC presents more CO tolerance for the HOR.
Detailed crystallization study of co-precipitated Y1.47Gd1.53Fe5O12 and relevant magnetic properties
Resumo:
The crystallization process of co-precipitated Y1.5Gd1.5Fe5O12 powder heated up to 1000 ºC at rate of 5 °C min-1 was investigated. Above 810 ºC crystalline Y1.47Gd1.53Fe5O12 was obtained with a lattice parameter of 12.41 Å and a theoretical density of 5.84 g cm-3. Dry pressed rings were sintered at 1270 and 1320 ºC, increasing the grain-size from 3.1 to 6.5 µm, the theoretical density by 87.6 to 95.3% and decreasing Hc from 2.9725 to 1.4005 Oe. Additionally, Hc increased when the frequency of the hysteresis graph varied from 60 Hz to 10 kHz, the curie temperature was 282.4 ºC and Ms equalled 9.25 emu g-1 (0.17 kG) agreeing well with the Bs-value of the hysteresis graph and literature values.
Resumo:
The performance of proton exchange membrane fuel cells (PEMFC) with Pt-based anodes is drastically lowered when CO-containing hydrogen is used to feed the system, because of the strong adsorption of CO on platinum. In the present work the effects of the presence of a conversion layer of CO to CO2 composed by several M/C materials (where M = Mo, Cu, Fe and W) in gas diffusion anodes formed by Pt catalysts were investigated. The diffusion layers formed by Mo/C e W/C show good CO-tolerance, and this was attributed to the CO removal by parallel occurrence of the water-gas shift reaction and the so-called bifunctional mechanism.
Resumo:
The aim of this investigation is to study how Zr/Ti-PILC adsorbs metals. The physico-chemical proprieties of Zr/Ti-PILC have been optimized with pillarization processes and Cu(II), Ni(II) and Co(II) adsorption from aqueous solution has been carried out, with maximum adsorption values of 8.85, 8.30 and 7.78 x10-1 mmol g-1, respectively. The Langmuir, Freundlich and Temkin adsorption isotherm models have been applied to fit the experimental data with a linear regression process. The energetic effect caused by metal interaction was determined through calorimetric titration at the solid-liquid interface and gave a net thermal effect that enabled the calculation of the exothermic values and the equilibrium constant.
Resumo:
It is investigated in the present contribution the oscillatory co-electrodeposition of CuSn on a polycrystalline gold surface in the presence of Triton X-100 surfactant and citric acid as additive, in acidic media. The experiments were conducted under potentiostatic control and the system dynamics characterized in terms of the morphology and stability of the current oscillations. Besides modulations in the frequency and amplitude of the current oscillations, several patterned states were observed, including relaxation-like and mixed mode oscillations. The oscillations were found to be very robust and some time series presented regular motions up to about two hours.
Resumo:
Recently lipases have been increasing in prominence due to its wide industrial application. The lipase production can be influenced by different variables such as the producing microorganism, carbon sources, aeration and agitation conditions, inductor type and the geometry of the reactor. Biosurfactants are composites of surface active produced by microbial cells which reduce superficial and interfacial tensions. The objective of this study was to verify the influence of different process variables in the lipase production during a fermentative process. The results showed that the concomitant production of lipases and biosurfactant was possible in different cultivation conditions.
Resumo:
Bupivacaine (S75-R25, NovaBupi®) is an amide type local anesthetic widely used. The present work consists of the development and validation of analytical methodology for evaluation of NovaBupi® content in the poly-lactide-co-glycolide nanospheres (PLGA-NS) by high performance liquid chromatography. The separation was made using the reversed-phase column LC-18, acetonitrile/phosphate buffer 85:15 v/v as mobile phase and detection at 220 nm. The results obtained show that the analytical methodology is accurate, reproducible, robust and linear over the concentration range 10-220.0 g/mL of NovaBupi®. The method was applied to determine the encapsulation efficiency and evaluate the release profile of NovaBupi®, showing good results.
Resumo:
For the construction of the phase diagrams, the method of the aqueous titration was used. There were prepared 5 ternary diagrams, varying the surfactant and the oil phase. The liquid-crystalline phases were identified by polarized light microscopy. The formulations prepared with silicon glycol copolymer, polyether functional siloxane (PFS) and water (S1) and with diisopropyl adipate, PFS and water (S4) presented liquid-crystalline phases with lamellar arrangement. Moreover, after 15 days in hot oven (37 ºC), the formulations presented hexagonal arrangement, evidencing the influence of the temperature in the organization of the system.
Resumo:
In this work, the perovskite-type oxides LaNiO3, LaMnO3, La0,7Sr0,3NiO3 and La0,7Sr0,3MnO3 were prepared by co-precipitation and tested in the NO reduction with CO at 400 and 500 ºC for 10 h. The catalysts were characterized by X-ray diffraction, temperature programmed reduction with hydrogen, nitrogen adsorption and chemical analysis. The nonstoichiometric oxygen was quantified by temperature programmed reduction, and the catalytic tests showed that the La0,7Sr0,3MnO3 catalyst presented the higher performance for the reduction reaction of NO with CO. The partial substitution of lanthanum by strontium increased the NO conversion and the N2 yield.
Efecto del catión, del anión y del co-ión sobre la agregación de líquidos iónicos en solución acuosa
Resumo:
The aggregation behavior of thirteen 1-alkyl-3-methylimidazolium based ionic liquids in aqueous solution is presented, considering variations of the alkyl side chain length as well as the anionic moiety. Cation and anion molecular volumes are selected as appropriate molecular descriptors. Additionally, the existing relationship between critical micelle concentration (CMC) and electrolyte concentration in solution is established, aiming to clarify ion effects. CMC values were obtained by measuring electrical conductivity and surface tension. It was confirmed that aggregation of ionic liquids in aqueous solution and in presence of inorganic salts is affected by the factors developed in this study.
Resumo:
Cu catalysts supported on CeO2, TiO2 and CeO2/TiO2 were prepared by precipitation method and used for preferential oxidation of carbon monoxide contained in a hydrogen flow generated by methane steam reforming. The samples were characterized by XRD, BET and TPR techniques. The catalytic properties were studied in the 50-330ºC range by using a quartz micro-reactor vertically positioned on an electrical furnace. The results showed that the small copper particles generated with the lower metal content are the most easily reducible and give the best catalytic performance. In respect of support effect, the strong metal-support interaction and the redox characteristics of the CuOx-CeO2 series resulted in the best catalytic results, especially with the sample with 1% copper content.