947 resultados para Citrullinated peptides


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human cancer vaccines are often prepared with altered "analog" or "heteroclitic" antigens that have been optimized for HLA class I binding, resulting in enhanced immunogenicity. Here, we take advantage of CpG oligodeoxynucleotides as powerful vaccine adjuvants and demonstrate the induction of high T cell frequencies in melanoma patients, despite the use of natural (unmodified) tumor antigenic peptide. Compared with vaccination with analog peptide, natural peptide induced T cell frequencies that were approximately twofold lower. However, T cells showed superior tumor reactivity because of (i) increased functional avidity for natural antigen and (ii) enhancement of T cell activation and effector function. Thus, novel vaccine formulations comprising potent immune stimulators may allow to circumvent the need for modified antigens and can induce highly functional T cells with precise antigen specificity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Astrocytes are the brain non-nerve cells competent for the expression of clear and dense-core vesicles (DCVs) and for their regulated exocytosis. This process, called gliosecretion, nearly resembles the neurosecretion occurring in neurons and neurosecretory cells. REST/NRSF is a transcription repressor known to orchestrate nerve-cell differentiation, governing the expression of hundreds of neuron-specific genes through their repression in the non-nerve and their fine modulation in the nerve cells. Our previous studies in neurosecretory rat PC12 cells identified REST as the critical factor for the expression not only of individual genes, but also of the whole neurosecretory process via multiple, direct and indirect mechanisms (D'Alessandro et al., J. Neurochem., 2008; Klajn et al., J. Neurosci., 2009). Therefore we wondered whether gliosecretion was governed by REST. We investigated rat astrocyte primary cultures: they exhibited high REST, which directly represses the transcription of at least one target gene, and expressed neither DCVs nor their markers (granins, peptides, membrane proteins). Transfection of a dominant-negative construct of REST (REST/ DBD-GFP) induced the appearance of DCVs filled with secretogranin2 and NPY that are distinct from other intracellular organelles. TIRF analysis of astrocytes co-transfected with REST/DBD-GFP and NPY-mRFP constructs revealed NPY-mRFP-positive DCVs undergoing Ca2þ-dependent exocytosis, largely prevented by BoNT/B. Immunohistochemistry of the I-II layers of the human temporal brain cortex showed all neurons and microglia exhibiting the expected inappreciable and high levels of REST, respectively. In contrast astrocyte RESTwas variable, going from inappreciable to high, accompanied by variable expression of DCVs. In this work it has been demonstrated that astrocyte DCV expression and gliosecretion are governed by REST (Prada et al., 2011 in press). The variable in situ REST levels may contribute to the well known structural/functional heterogeneity of astrocytes and this new observation might be of great interest for the understanding of both astrocyte physiology and pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aggregation-prone polyglutamine (polyQ) expansion proteins cause several neurodegenerative disorders, including Huntington disease. The pharmacological activation of cellular stress responses could be a new strategy to combat protein conformational diseases. Hydroxylamine derivatives act as co-inducers of heat-shock proteins (HSPs) and can enhance HSP expression in diseased cells, without significant adverse effects. Here, we used Caenorhabditis elegans expressing polyQ expansions with 35 glutamines fused to the yellow fluorescent protein (Q35-YFP) in body wall muscle cells as a model system to investigate the effects of treatment with a novel hydroxylamine derivative, NG-094, on the progression of polyQ diseases. NG-094 significantly ameliorated polyQ-mediated animal paralysis, reduced the number of Q35-YFP aggregates and delayed polyQ-dependent acceleration of aging. Micromolar concentrations of NG-094 in animal tissues with only marginal effects on the nematode fitness sufficed to confer protection against polyQ proteotoxicity, even when the drug was administered after disease onset. NG-094 did not reduce insulin/insulin-like growth factor 1-like signaling, but conferred cytoprotection by a mechanism involving the heat-shock transcription factor HSF-1 that potentiated the expression of stress-inducible HSPs. NG-094 is thus a promising candidate for tests on mammalian models of polyQ and other protein conformational diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary: Detailed knowledge on tumor antigen expression and specific immune cells is required for a rational design of immunotherapy for patients with tumor invaded liver. In this study, we confirmed that Cancer/Testis (CT) tumor-associated antigens are frequently expressed in hepatocellular carcinoma (HCC) and searched for the presence of CD8+ T cells specific for these antigens. In 2/10 HLA-A2+ patients with HCC, we found that MAGE-A10 and/or SSX-2 specific CD8+ T cells naturally responded to the disease, since they were enriched in tumor lesions but not in non-tumoral liver. Isolated T cells specifically and strongly killed tumor cells in vitro, suggesting that these CTL were selected in vivo for high avidity antigen recognition, providing the rational for specific immunotherapy of HCC, based on immunization with CT antigens such as MAGE-Al 0 and SSX-2. Type 1 NKT cells express an invariant TCR α chain (Vα24.1α18, paired with Vβ11 in human) and share a specific reactivity to αGalactosylceramide (αGC) presented by CD1d. These cells can display paradoxical immuno-regulatory properties including strong anti-tumor effects upon αGC administration in murine models. To understand why NKT cells were not sufficiently protective against tumor development in patients with tumor invaded liver, we characterized the diversity of Vα24/Vβ11 NKT cells in healthy donors (HD) and cancer patients: NKT cells from HD and patients were generally diverse in terms of TCR β chain (Vβ11) variability and NKT cells from HD showed a variable recognition of αGC loaded CD 1 d multimers. Vα24/ Vβ11 NKT cells can be divided in 3 populations, the CD4, DN (CD4-/CD8-) and CD8 NKT cell subsets that show distinct ability of cytokine production. In addition, our functional analysis revealed that DN and CD8 subsets displayed a higher cytolytic potential and a weaker IFNγ release than the CD4 NKT cell subset. NKT cell subsets were variably represented in the blood of HD and cancer patients. However, HD with high NKT cell frequencies displayed an enrichment of the DN and CD8 subsets, and few of them were suggestive of an oligoclonal expansion in vivo. Comparable NKT cell frequencies were found between blood, non-tumoral liver and tumor of patients. In contrast, we identified a gradual enrichment of CD4 NKT cells from blood to the liver and to the tumor, together with a decrease of DN and CD8 NKT cell subsets. Most patient derived NKT cells were unresponsive upon αGalactosylceramide stimulation ex vivo; NKT cells from few patients displayed a weak responsiveness with different cytokine polarization. The NKT cell repertoire was thus different in tumor tissue, suggesting that CD4 NKT cells infiltrating tumors may be detrimental for protection against tumors and instead may favour the tumor growth/recurrence as recently reported in mice. Résumé en français scientifique : Afin de développer le traitement des patients porteurs d'une tumeur dans le foie par immunothérapie, de nouvelles connaissances sont requises concernant l'expression d'antigènes par les tumeurs et les cellules immunitaires spécifiques de ces antigènes. Nous avons vérifié que des antigènes associés aux tumeurs, tels que les antigènes « Cancer-Testis » (CT), sont fréquemment exprimés par le carcinome hepatocéllulaire (CHC). La recherche de lymphocytes T CD8+ spécifiques (CTL) de ces antigènes a révélé que des CTL spécifiques de MAGE-A10 et/ou SSX-2 ont répondu naturellement à la tumeur chez 2/10 patients étudiés. Ces cellules étaient présentes dans les lésions tumorales mais pas dans le foie adjacent. De plus, ces CTL ont démontré une activité cytolytique forte et spécifique contre les cellules tumorales in vitro, ce qui suggère que ces CTL ont été sélectionnés pour une haute avidité de reconnaissance de l'antigène in vivo. Ces données fournissent une base pour l'immunothérapie spécifique du CHC, en proposant de cibler les antigènes CT tels que MAGE-A10 ou SSX-2. Les cellules NKT de type 1 ont une chaîne α de TCR qui est invariante (chez l'homme, Vα24Jα18, apparié avec Vβ11) et reconnaissent spécifiquement l'αGalactosylceramide (αGC) présenté par CD1d. Ces cellules ont des propriétés immuno¬régulatrices qui peuvent être parfois contradictoires et leur activation par l'αGC induit une forte protection anti-tumorale chez la souris: Afin de comprendre pourquoi ces cellules ne sont pas assez protectrices contre le développement des tumeurs dans le foie chez l'homme, nous avons étudié la diversité des cellules NKT Vα24/Vβ11 d'individus sains (IS) et de patients cancéreux. Les cellules NKT peuvent être sous-divisées en 3 populations : Les CD4, DN (CD4- /CD8-) ou CDS, qui ont la capacité de produire des cytokines différentes. Nos analyses fonctionnelles ont aussi révélé que les sous-populations DN et CD8 ont un potentiel cytolytique plus élevé et une production d'IFNγ plus faible que la sous-population CD4. Ces sous-populations sont représentées de manière variable dans le sang des IS ou des patients. Cependant, les IS avec un taux élevé de cellules NKT ont un enrichissement des sous- populations DN ou CDS, et certains suggèrent qu'il s'agit d'une expansion oligo-clonale in vivo. Les patients avaient des fréquences comparables de cellules NKT entre le sang, le foie et la tumeur. Par contre, la sous-population CD4 était progressivement enrichie du sang vers le foie et la tumeur, tandis que les sous-populations DN ou CD8 était perdues. La plupart des cellules NKT des patients ne réagissaient pas lors de stimulation avec l'αGC ex vivo et les cellules NKT de quelques patients répondaient faiblement et avec des polarisations de cytokines différentes. Ces données suggèrent que les cellules NKT CD4, prédominantes dans les tumeurs, sont inefficaces pour la lutte anti-tumorale et pourraient même favoriser la croissance ou la récurrence tumorale. Donc, une mobilisation spécifique des cellules NKT CD4 négatives par immunothérapie pourrait favoriser l'immunité contre des tumeurs chez l'homme. Résumé en français pour un large public Au sein des globules blancs, les lymphocytes T expriment un récepteur (le TCR), qui est propre à chacun d'entre eux et leur permet d'accrocher de manière très spécifique une molécule appelée antigène. Ce TCR est employé par les lymphocytes pour inspecter les antigènes associés avec des molécules présentatrices à la surface des autres cellules. Les lymphocytes T CD8 reconnaissent un fragment de protéine (ou peptide), qui est présenté par une des molécules du Complexe Majeur d'Histocompatibilité de classe I et tuent la cellule qui présente ce peptide. Ils sont ainsi bien adaptés pour éliminer les cellules qui présentent un peptide issu d'un virus quand la cellule est infectée. D'autres cellules T CD8 reconnaissent des peptides comme les antigènes CT, qui sont produits anormalement par les cellules cancéreuses. Nous avons confirmé que les antigènes CT sont fréquemment exprimés par le cancer du foie. Nous avons également identifié des cellules T CD8 spécifiques d'antigènes CT dans la tumeur, mais pas dans le foie normal de 2 patients sur 10. Cela signifie que ces lymphocytes peuvent être naturellement activés contre la tumeur et sont capables de la trouver. De plus les lymphocytes issus d'un patient ont démontré une forte sensibilité pour reconnaître l'antigène et tuent spécifiquement les cellules tumorales. Les antigènes CT représentent donc des cibles intéressantes qui pourront être intégrés dans des vaccins thérapeutiques du cancer du foie. De cette manière, les cellules T CD8 du patient lui-même pourront être induites à détruire de manière spécifique les cellules cancéreuses. Un nouveau type de lymphocytes T a été récemment découvert: les lymphocytes NKT. Quand ils reconnaissent un glycolipide présenté par la molécule CD1d, ils sont capables, de manière encore incomprise, d'initier, d'augmenter, ou à l'inverse d'inhiber la défense immunitaire. Ces cellules NKT ont démontré qu'elles jouent un rôle important dans la défense contre les tumeurs et particulièrement dans le foie des souris. Nous avons étudié les cellules NKT de patients atteints d'une tumeur dans le foie, afin de comprendre pourquoi elles ne sont pas assez protectrice chez l'homme. Les lymphocytes NKT peuvent être sous-divisés en 3 populations: Les CD4, les DN (CD4-/CD8-) et les CD8. Ces 3 classes de NKT peuvent produire différents signaux chimiques appelés cytokines. Contrairement aux cellules NKT DN ou CDS, seules les cellules NKT CD4 sont capables de produire des cytokines qui sont défavorables pour la défense anti-tumorale. Par ailleurs nous avons trouvé que les cellules NKT CD4 tuent moins bien les cellules cancéreuses que les cellules NKT DN ou CD8. L'analyse des cellules NKT, fraîchement extraites du sang, du foie et de la tumeur de patients a révélé que les cellules NKT CD4 sont progressivement enrichies du sang vers le foie et la tumeur. La large prédominance des NKT CD4 à l'intérieur des tumeurs suggère que, chez l'homme, ces cellules sont inappropriées pour la lutte anti-tumorale. Par ailleurs, la plupart des cellules NKT de patients n'étaient pas capables de produire des cytokines après stimulation avec un antigène. Cela explique également pourquoi ces cellules ne protègent pas contre les tumeurs dans le foie.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enriched by a decade of remarkable developments, matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has witnessed a phenomenal expansion. Initially introduced for the mapping of peptides and intact proteins from mammalian tissue sections, MALDI IMS applications now extend to a wide range of molecules including peptides, lipids, metabolites and xenobiotics. Technology and methodology are quickly evolving to push the limits of the technique forward. Within a short period of time, numerous protocols and concepts have been developed and introduced in tissue section preparation, nonexhaustively including in situ tissue chemistries and solvent-free matrix depositions. Considering the past progress and current capabilities, this Review aims to cover the different aspects and challenges of tissue section preparation for MALDI IMS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Two long synthetic peptides representing the dimorphic and constant C-terminal domains of the two allelic families of Plasmodium falciparum merozoite surface proteins 2 are considered promising malaria vaccine candidates. The aim of the current study is to characterize the immune response (epitope mapping) in naturally exposed individuals and relate immune responses to the risk of clinical malaria. METHODS: To optimize their construction, the fine specificity of human serum antibodies from donors of different age, sex and living in four distinct endemic regions was determined in ELISA by using overlapping 20 mer peptides covering the two domains. Immune purified antibodies were used in Western blot and immunofluorescence assay to recognize native parasite derivate proteins. RESULTS: Immunodominant epitopes were characterized, and their distribution was similar irrespective of geographic origin, age group and gender. Acquisition of a 3D7 family and constant region-specific immune response and antibody avidity maturation occur early in life while a longer period is needed for the corresponding FC27 family response. In addition, the antibody response to individual epitopes within the 3D7 family-specific region contributes to protection from malaria infection with different statistical weight. It is also illustrated that affinity-purified antibodies against the dimorphic or constant regions recognized homologous and heterologous parasites in immunofluorescence and homologous and heterologous MSP2 and other polypeptides in Western blot. CONCLUSION: Data from this current study may contribute to a development of MSP2 vaccine candidates based on conserved and dimorphic regions thus bypassing the complexity of vaccine development related to the polymorphism of full-length MSP2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schistosoma mansoni, an intravascular parasite, lives in a hostile environment in close contact with host humoral and cellular cytotoxic factors. To establish itself in the host, the parasite has evolved a number of immune evasion mechanisms, such as antioxidant enzymes. Our laboratory has demonstrated that the expression of antioxidant enzymes is developmentally regulated, with the highest levels present in the adult worm, the stage least susceptible to immune elimination, and the lowest levels in the larval stages, the most susceptible to immune elimination. Vaccination of mice with naked DNA constructs containing Cu/Zn cytosolic superoxide dismutase (CT-SOD), signal-peptide containing SOD or glutathione peroxidase (GPX) showed significant levels of protection compared to a control group. We have further shown that vaccination with SmCT-SOD but not SmGPX results in elimination of adult worms. Anti-oxidant enzyme vaccine candidates offer an advance over existing vaccine strategies that all seem to target the larval developmental stages in that they target adult worms and thus may have therapeutic as well as prophylactic value. To eliminate the potential for cross-reactivity of SmCT-SOD with human superoxide dismutase, we identified parasite-specific epitope-containing peptides. Our results serve as a basis for developing a subunit vaccine against schistosomiasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paramyosin and Sm14 are two of the six antigens selected by the World Health Organization as candidates to compose a subunit vaccine against schistosomiasis. Both antigens are recognized by individuals naturally resistant to Schistosoma mansoni infection and induced protective immunity in the murine model. Three Sm14 epitopes and eleven paramyosin epitopes were selected by their ability to bind to different HLA-DR molecules using the TEPITOPE computer program, and these peptides were synthetically produced. The cellular recognition of Sm14 and paramyosin epitopes by peripheral blood mononuclear cells of individuals living in endemic area for schistosomiasis was tested by T cell proliferation assay. Among all Sm14 and paramyosin epitopes studied, Sm14-3 was preferentially recognized by individuals naturally resistant to S. mansoni infection while Para-5 was preferentially recognized by individuals resistant to reinfection. These two peptides represent promising antigens to be used in an experimental vaccine against schistosomiasis, since their preferential recognition by resistant individuals suggest their involvement in the induction of protective immunity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: There is urgent need of a treatment for progressive multifocal leukoencephalopathy (PML), caused by the polyomavirus JC (JCV). To evaluate the rationale for immunotherapy of PML, we explored whether JCV-specific cytotoxic T lymphocytes (CTL) can penetrate the central nervous system (CNS). In addition, we studied the breadth of their T-cell receptor (TCR) repertoire, and sought to establish a reliable method to expand these cells in vitro. DESIGN AND METHODS: We enrolled 18 patients in this study, including 16 with proven or possible PML (15 HIV-positive and one HIV-negative), and two HIV-positive patients with other neurological diseases. Detection of JCV-specific CTL in the blood and the cerebrospinal fluid was performed by Cr release and tetramer staining assays in 15 patients. RESULTS: Of 11 PML patients with analyzable cerebrospinal fluid (CSF), two had no detectable JCV-specific CTL in the blood and CSF and died 3.7 and 7.2 months later. The nine remaining patients had an inactive course of PML and detectable JCV-specific CTL in the blood. In addition, four of them (44%) also had detectable JCV-specific CTL in the CSF. Both HIV-positive patients with OND had detectable JCV-specific CTL in the blood and one in the CSF. Using tetramer technology, we obtained highly enriched JCV-specific CTL lines that were able to kill target cells presenting JCV peptides. The breadth of the TCR repertoire was CTL epitope dependent. CONCLUSIONS: These results indicate that JCV-specific CTL are present in the CNS of PML patients and pave the way for an immune-based therapeutic approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anti-human immunodeficiency virus type 1 (HIV-1) "binding antibodies" (antibodies capable of binding to synthetic peptides or proteins) occur throughout HIV-1 infection, are high-titered and highly cross-reactive, as confirmed in this study by analyzing plasma from B and F genotype HIV-1 infected individuals. Plasma from individuals infected with clade F HIV-1 displayed the most frequent cross-reactivity, in high titers, while Bbr plasma showed much higher specificity. Similarly, neutralization of a reference HIV-1 isolate (HIV-1 MN) was more frequently observed by plasma from F than B genotype infected individuals. No significant difference was seen in neutralization susceptibility of primary B, Bbr or F clade HIV-1 by plasma from individuals infected with the classical B (GPGR) or F HIV-1, but Bbr (GWGR) plasma were less likely to neutralize the F genotype primary HIV-1 isolates. The data indicate that both B and F genotype derived vaccines would be equally effective against B and F HIV-1 infection, with a slightly more probable effectiveness for F than B genotype. Although the Bbr variant appears to induce a much more specific humoral immune response, the susceptibility in neutralizing the Brazilian HIV-1 B genotype Bbr variant is similar to that observed with the classical B genotype HIV-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T cell migration, essential for immune surveillance and response, is mediated by the integrin LFA-1. CatX, a cysteine carboxypeptidase, is involved in the regulation of T cell migration by interaction with LFA-1. We show that sequential cleavage of C-terminal amino acids from the β(2) cytoplasmic tail of LFA-1, by CatX, enhances binding of the adaptor protein talin to LFA-1 and triggers formation of the latter's high-affinity form. As shown by SPR analysis of peptides constituting the truncated β(2) tail, the cleavage of three C-terminal amino acids by CatX resulted in a 1.6-fold increase of talin binding. Removal of one more amino acid resulted in a 2.5-fold increase over the intact tail. CatX cleavage increased talin-binding affinity to the MD but not the MP talin-binding site on the β(2) tail. This was shown by molecular modeling of the β(2) tail/talin F3 complex to be a result of conformational changes affecting primarily the distal-binding site. Analysis of LFA-1 by conformation-specific mAb showed that CatX modulates LFA-1 affinity, promoting formation of high-affinity from intermediate-affinity LFA-1 but not the initial activation of LFA-1 from a bent to extended form. CatX post-translational modifications may thus represent a mechanism of LFA-1 fine-tuning that enables the trafficking of T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malaria is one of the most important tropical and infectious diseases causing many deaths and enormous social and economic consequences, particularly in the developing countries. Despite of widely use of anti-malaria drugs and insecticide, the development of successful vaccines constitutes one of the main strategies to control malaria transmission. Several proteins expressed from blood stage such as merozoite surface proteins (MSP] or liver stage as circumsporozoite protein (CSP) are shown to be the targets of immune responses in humans and in animals. Thus, several studies have illustrated that natural infection and laboratory immunizations of humans and animals with Plasmodium sporozoite (SPZ) and its derivate-proteins (peptides) can elicit protection and control of parasite infection. However, a clear understanding of immune response against defined Plasmodium proteins should be the prerequisite conditions before any development of appropriate vaccines. In this order, our study focused on the immune responses to MSP2 (dimorphic and C-terminal fragments) in human and mice; and the mechanisms by which mouse infected hepatocytes present Plasmodium antigens to CD8+ T-cells to induce protective immunity in mice.¦The first part of this work shows that infected hepatocytes can present Plasmodium antigens to PbCSP-specific CD8+ T-cells and induce a protective immunity in mice. Here, this was addressed in vivo and showed that the infected hepatocytes were able of stimulating of primed-and naive-CD8+ T-cell clones and induced fully protective immunity against SPZ challenge. The role of infected hepatocytes in antigen presentation was illustrated here by their graft into immuno-deficient mice and depletion of cosspresenting dentritic cells (DCs) that are known to have key role in the activation of CD8+ T-cells during the liver cycle stage of Plasmodium.¦The second part of this project concerned the fine specificity of Ab responses regarding D and C regions of the two allelic families of MSP2 (3D7 and FC27). Covering of the two regions by overlapping-20 mers led to delineate the epitopes in the different endemic areas and different age groups of donors. The major epitopes characterizing D or C regions were conserved in different endemic areas (P12/P13 and P15/P16 for the 3D7-D, P23/24 and P25/26 for the FC27-D; P29/P30 for the C region). This offers thus, the possibility of a multi-epitope vaccine design including the major epitopes from the two domains of the two allelic MSP2 families. On the other, the 20 mers, particularly some major epitopes of the 3D7-Dregion (P12, P13 and P16) belonged to the epitopes that presented a high probability to be associated with protection in the children group [1 to 5 year-old). In addition, D and C LSP purified Abs (pAbs) recognized merozoite derived polypeptides and native proteins. A crossreactivity activity of homologous pAbs against the heterologous was also illustrated between the two allelic MSP2 parasites. Finally, the functional analysis of D regions pAbs showed an inhibition of Plasmodium falciparum growth suggesting the functional biological activity of the D region pAbs in the control of malaria.¦The last part of this project aimed the evaluation of the immunogenicity of the D and C region LSPs of the two allelic MSP2 families in the presence of adjuvants for the possible use in clinical trial study in humans. The MSP2 LSP mixture showed that D and C were immunogenic and defined limited epitopes (whose intensity of immune responses) depending on the adjuvants and mouse strain for the D regions. The major epitopes characterizing the C region were usually conserved in different strains of mouse and adjuvants used. Furthermore, the single region (either with D or C) immunization of mice confirmed the immunogenicity and the presence of their limited epitopes. We concluded that the possibility to finely delineate in animals the immune responses to antigens might help to select optimal antigen/adjuvant combinations to be tested later in clinical trials. Thus, formulation of glucopyranosyl-lipid A stable emulsion, GLA-SE (toll like receptor (TLR) 4 agonist) and its different combination (CpG: TLR9 agonist and GDQ: LR7 agonist) with MSP2 LSP was better than with alum, montanide ISA 720 (Mt) and virosome. Immunization of mice with allelic LSP did not show a crossreactivity between the two allelic MSP2 parasites unlike as humans, suggesting that the crossreactivity could be acquired during natural infection of the population who are usually exposed to both allelic parasite forms (3D7 and FC27).¦Nevertheless, similar epitope of D (P12, P13 and P25) and C (P29) regions have been found both in mice and human. This offers an opportunity to compare their epitopes in naïve immunized donors with LSPs and naturally infected populations in the endemic areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Hepcidin, a 25 amino acid peptide, plays an important role in iron homeostasis. Some hepcidin truncated peptides have antibiotic effects. RESULTS: A new analytical method for hepcidin determination in human plasma using LC-HRMS operating in full-scan acquisition mode has been validated. The extraction consists of protein precipitation and a drying reconstitution step; a 2.1 x 50 mm (idxL) C18 analytical column was used. Detection specificity, stability, accuracy, precision and recoveries were determined. The LOQ/LOD were 0.25/0.1 nM, respectively. More than 600 injections of plasma extracts were performed, allowing evaluation of the assay robustness. Hepcidin-20, hepcidin-22 and a new isoform, hepcidin-24, were detected in patients. CONCLUSION: The data underscore the usefulness of LC-HRMS for in-depth investigations related to hepcidin levels and pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a murine model of experimental cutaneous leishmaniasis, we investigated the protection elicited by injection of histone H1 isolated from parasites by perchloric extraction, of a H1 recombinant protein produced in E. coli, and of H1 long and short synthetic peptides, against infection by L. major. Partial protection was achieved in most of the animals as shown by reduction in lesion size, upon immunization with histone H1 or its peptides, provided that the region 1-60 was present in the molecule. These observations argue in favor of a thorough examination of the possibility of including histone H1 described here in a cocktail vaccine against human leishmaniasis.