935 resultados para Cirugía vascular
Resumo:
Peatlands are widely exploited archives of paleoenvironmental change. We developed and compared multiple transfer functions to infer peatland depth to the water table (DWT) and pH based on testate amoeba (percentages, or presence/absence), bryophyte presence/absence, and vascular plant presence/absence data from sub-alpine peatlands in the SE Swiss Alps in order to 1) compare the performance of single-proxy vs. multi-proxy models and 2) assess the performance of presence/absence models. Bootstrapping cross-validation showing the best performing single-proxy transfer functions for both DWT and pH were those based on bryophytes. The best performing transfer functions overall for DWT were those based on combined testate amoebae percentages, bryophytes and vascular plants; and, for pH, those based on testate amoebae and bryophytes. The comparison of DWT and pH inferred from testate amoeba percentages and presence/absence data showed similar general patterns but differences in the magnitude and timing of some shifts. These results show new directions for paleoenvironmental research, 1) suggesting that it is possible to build good-performing transfer functions using presence/absence data, although with some loss of accuracy, and 2) supporting the idea that multi-proxy inference models may improve paleoecological reconstruction. The performance of multi-proxy and single-proxy transfer functions should be further compared in paleoecological data.
Resumo:
Intussusceptive angiogenesis is a novel mode of blood vessel formation and remodeling, which occurs by internal division of the preexisting capillary plexus without sprouting. In this study, the process is demonstrated in developing chicken eye vasculature and in the chorioallantoic membrane by methylmethacrylate (Mercox) casting, transmission electron microscopy, and in vivo observation. In a first step of intussusceptive angiogenesis, the capillary plexus expands by insertion of numerous transcapillary tissue pillars, ie, by intussusceptive microvascular growth. In a subsequent step, a vascular tree arises from the primitive capillary plexus as a result of intussusceptive pillar formation and pillar fusions, a process we termed "intussusceptive arborization." On the basis of the morphological observations, a 4-step model for intussusceptive arborization is proposed, as follows: phase I, numerous circular pillars are formed in rows, thus demarcating future vessels; phase II, formation of narrow tissue septa by pillar reshaping and pillar fusions; phase III, delineation, segregation, growth, and extraction of the new vascular entity by merging of septa; and phase IV, formation of new branching generations by successively repeating the process, complemented by growth and maturation of all components. In contrast to sprouting, intussusceptive angiogenesis does not require intense local endothelial cell proliferation; it is implemented primarily by rearrangement and attenuation of the endothelial cell plates. In summary, transcapillary pillar formation, ie, intussusception, is a central and probably widespread process, which plays a role not only in capillary network growth and expansion (intussusceptive microvascular growth), but also in vascular plexus remodeling and tree formation (intussusceptive arborization).
Resumo:
Children conceived by assisted reproductive technologies (ART) display a level of vascular dysfunction similar to that seen in children of mothers with preeclamspia. The long-term consequences of ART-associated vascular disorders are unknown and difficult to investigate in healthy children. Here, we found that vasculature from mice generated by ART display endothelial dysfunction and increased stiffness, which translated into arterial hypertension in vivo. Progeny of male ART mice also exhibited vascular dysfunction, suggesting underlying epigenetic modifications. ART mice had altered methylation at the promoter of the gene encoding eNOS in the aorta, which correlated with decreased vascular eNOS expression and NO synthesis. Administration of a deacetylase inhibitor to ART mice normalized vascular gene methylation and function and resulted in progeny without vascular dysfunction. The induction of ART-associated vascular and epigenetic alterations appeared to be related to the embryo environment; these alterations were possibly facilitated by the hormonally stimulated ovulation accompanying ART. Finally, ART mice challenged with a high-fat diet had roughly a 25% shorter life span compared with control animals. This study highlights the potential of ART to induce vascular dysfunction and shorten life span and suggests that epigenetic alterations contribute to these problems.
Resumo:
Aims: To assess observations with multimodality imaging of the Absorb bioresorbable everolimus-eluting vascular scaffold performed in two consecutive cohorts of patients who were serially investigated either at 6 and 24 months or at 12 and 36 months. Methods and results: In the ABSORB multicentre single-arm trial, 45 patients (cohort B1) and 56 patients (cohort B2) underwent serial invasive imaging, specifically quantitative coronary angiography (QCA), intravascular ultrasound (IVUS), radiofrequency backscattering (IVUS-VH) and optical coherence tomography (OCT). Between one and three years, late luminal loss remained unchanged (6 months: 0.19 mm, 1 year: 0.27 mm, 2 years: 0.27 mm, 3 years: 0.29 mm) and the in-segment angiographic restenosis rate for the entire cohort B (n=101) at three years was 6%. On IVUS, mean lumen, scaffold, plaque and vessel area showed enlargement up to two years. Mean lumen and scaffold area remained stable between two and three years whereas significant reduction in plaque behind the struts occurred with a trend toward adaptive restrictive remodelling of EEM. Hyperechogenicity of the vessel wall, a surrogate of the bioresorption process, decreased from 23.1% to 10.4% with a reduction of radiofrequency backscattering for dense calcium and necrotic core. At three years, the count of strut cores detected on OCT increased significantly, probably reflecting the dismantling of the scaffold; 98% of struts were covered. In the entire cohort B (n=101), the three-year major adverse cardiac event rate was 10.0% without any scaffold thrombosis. Conclusions: The current investigation demonstrated the dynamics of vessel wall changes after implantation of a bioresorbable scaffold, resulting at three years in stable luminal dimensions, a low restenosis rate and a low clinical major adverse cardiac events rate.
Resumo:
AIMS To assess serially the edge vascular response (EVR) of a bioresorbable vascular scaffold (BVS) compared to a metallic everolimus-eluting stent (EES). METHODS AND RESULTS Non-serial evaluations of the Absorb BVS at one year have previously demonstrated proximal edge constrictive remodelling and distal edge changes in plaque composition with increase of the percent fibro-fatty (FF) tissue component. The 5 mm proximal and distal segments adjacent to the implanted devices were investigated serially with intravascular ultrasound (IVUS), post procedure, at six months and at two years, from the ABSORB Cohort B1 (n=45) and the SPIRIT II (n=113) trials. Twenty-two proximal and twenty-four distal edge segments were available for analysis in the ABSORB Cohort B1 trial. In the SPIRIT II trial, thirty-three proximal and forty-six distal edge segments were analysed. At the 5-mm proximal edge, the vessels treated with an Absorb BVS from post procedure to two years demonstrated a lumen loss (LL) of 6.68% (-17.33; 2.08) (p=0.027) with a trend toward plaque area increase of 7.55% (-4.68; 27.11) (p=0.06). At the 5-mm distal edge no major changes were evident at either time point. At the 5-mm proximal edge the vessels treated with a XIENCE V EES from post procedure to two years did not show any signs of LL, only plaque area decrease of 6.90% (-17.86; 4.23) (p=0.035). At the distal edge no major changes were evident with regard to either lumen area or vessel remodelling at the same time point. CONCLUSIONS The IVUS-based serial evaluation of the EVR up to two years following implantation of a bioresorbable everolimus-eluting scaffold shows a statistically significant proximal edge LL; however, this finding did not seem to have any clinical implications in the serial assessment. The upcoming imaging follow-up of the Absorb BVS at three years is anticipated to provide further information regarding the vessel wall behaviour at the edges.
Resumo:
BACKGROUND The long-term results after second generation everolimus eluting bioresorbable vascular scaffold (Absorb BVS) placement in small vessels are unknown. Therefore, we investigated the impact of vessel size on long-term outcomes, after Absorb BVS implantation. METHODS In ABSORB Cohort B Trial, out of the total study population (101 patients), 45 patients were assigned to undergo 6-month and 2-year angiographic follow-up (Cohort B1) and 56 patients to have angiographic follow-up at 1-year (Cohort B2). The pre-reference vessel diameter (RVD) was <2.5 mm (small-vessel group) in 41 patients (41 lesions) and ≥2.5 mm (large-vessel group) in 60 patients (61 lesions). Outcomes were compared according to pre-RVD. RESULTS At 2-year angiographic follow-up no differences in late lumen loss (0.29±0.16 mm vs 0.25±0.22 mm, p=0.4391), and in-segment binary restenosis (5.3% vs 5.3% p=1.0000) were demonstrated between groups. In the small-vessel group, intravascular ultrasound analysis showed a significant increase in vessel area (12.25±3.47 mm(2) vs 13.09±3.38 mm(2) p=0.0015), scaffold area (5.76±0.96 mm(2) vs 6.41±1.30 mm(2) p=0.0008) and lumen area (5.71±0.98 mm(2) vs 6.20±1.27 mm(2) p=0.0155) between 6-months and 2-year follow-up. No differences in plaque composition were reported between groups at either time point. At 2-year clinical follow-up, no differences in ischaemia-driven major adverse cardiac events (7.3% vs 10.2%, p=0.7335), myocardial infarction (4.9% vs 1.7%, p=0.5662) or ischaemia-driven target lesion revascularisation (2.4% vs 8.5%, p=0.3962) were reported between small and large vessels. No deaths or scaffold thrombosis were observed. CONCLUSIONS Similar clinical and angiographic outcomes at 2-year follow-up were reported in small and large vessel groups. A significant late lumen enlargement and positive vessel remodelling were observed in small vessels.
Resumo:
BACKGROUND Microvascular anastomosis is the cornerstone of free tissue transfers. Irrespective of the microsurgical technique that one seeks to integrate or improve, the time commitment in the laboratory is significant. After extensive previous training on several animal models, we sought to identify an animal model that circumvents the following issues: ethical rules, cost, time-consuming and expensive anesthesia, and surgical preparation of tissues required to access vessels before performing the microsurgical training, not to mention that laboratories are closed on weekends. METHODS Between January 2012 and April 2012, a total of 91 earthworms were used for 150 microsurgical training exercises to simulate vascular end-to-side microanastomosis. The training sessions were divided into ten periods of 7 days. Each training session included 15 simulations of end-to-side vascular microanastomoses: larger than 1.5 mm (n=5), between 1.0 and 1.5 mm (n=5), and smaller than 1.0 mm (n=5). A linear model with the main variables being the number of weeks (as a numerical covariate) and the size of the animal (as a factor) was used to determine the trend in time of anastomosis over subsequent weeks as well as the differences between the different size groups. RESULTS The linear model shows a significant trend (p<0.001) in time of anastomosis in the course of the training, as well as significant differences (p<0.001) between the groups of animals of different sizes. For microanastomoses larger than 1.5 mm, the mean anastomosis time decreased from 19.3±1.0 to 11.1±0.4 min between the first and last week of training (decrease of 42.5%). For training with smaller diameters, the results showed a decrease in execution time of 43.2% (diameter between 1.0 and 1.5 mm) and 40.9% (diameter<1.0 mm) between the first and last periods. The study demonstrates an improvement in the dexterity and speed of nodes execution. CONCLUSION The earthworm appears to be a reliable experimental model for microsurgical training of end-to-side microanastomoses. Its numerous advantages are discussed here and we predict training on earthworms will significantly grow and develop in the near future. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Resumo:
BACKGROUND Acute exposure to high altitude stimulates free radical formation in lowlanders, yet whether this persists during chronic exposure in healthy, well-adapted and maladapted highlanders suffering from chronic mountain sickness (CMS) remains to be established. METHODS Oxidative-nitrosative stress (as determined by the presence of the biomarkers ascorbate radical [A •- ], via electron paramagnetic resonance spectroscopy, and nitrite [NO 2 2 ], via ozone-based chemiluminescence) was assessed in venous blood of 25 male highlanders in Bolivia living at 3,600 m with CMS (n 5 13, CMS 1 ) and without CMS (n 5 12, CMS 2 ). Twelve age- and activity-matched, healthy, male lowlanders were examined at sea level and during acute hypoxia. We also measured fl ow-mediated dilatation (FMD), arterial stiffness defined by augmentation index normalized for a heart rate of 75 beats/min (AIx-75), and carotid intima-media thickness (IMT). RESULTS Compared with normoxic lowlanders, oxidative-nitrosative stress was moderately increased in the CMS 2 group ( P , .05), as indicated by elevated A •- (3,191 457 arbitrary units [AU] vs 2,640 445 AU) and lower NO 2 2 (206 55 nM vs 420 128 nM), whereas vascular function remained preserved. This was comparable to that observed during acute hypoxia in lowlanders in whom vascular dysfunction is typically observed. In contrast, this response was markedly exaggerated in CMS 1 group (A •- , 3,765 429 AU; NO 2 2 , 148 50 nM) compared with both the CMS 2 group and lowlanders ( P , .05). This was associated with systemic vascular dysfunction as indicated by lower ( P , .05 vs CMS 2 ) FMD (4.2% 0.7% vs 7.6% 1.7%) and increased AIx-75 (23% 8% vs 12% 7%) and carotid IMT (714 127 m M vs 588 94 m M). CONCLUSIONS Healthy highlanders display a moderate, sustained elevation in oxidative-nitrosative stress that, unlike the equivalent increase evoked by acute hypoxia in healthy lowlanders, failed to affect vascular function. Its more marked elevation in patients with CMS may contribute to systemic vascular dysfunction.
Resumo:
Insults during the fetal period predispose the offspring to systemic cardiovascular disease, but little is known about the pulmonary circulation and the underlying mechanisms. Maternal undernutrition during pregnancy may represent a model to investigate underlying mechanisms, because it is associated with systemic vascular dysfunction in the offspring in animals and humans. In rats, restrictive diet during pregnancy (RDP) increases oxidative stress in the placenta. Oxygen species are known to induce epigenetic alterations and may cross the placental barrier. We hypothesized that RDP in mice induces pulmonary vascular dysfunction in the offspring that is related to an epigenetic mechanism. To test this hypothesis, we assessed pulmonary vascular function and lung DNA methylation in offspring of RDP and in control mice at the end of a 2-wk exposure to hypoxia. We found that endothelium-dependent pulmonary artery vasodilation in vitro was impaired and hypoxia-induced pulmonary hypertension and right ventricular hypertrophy in vivo were exaggerated in offspring of RDP. This pulmonary vascular dysfunction was associated with altered lung DNA methylation. Administration of the histone deacetylase inhibitors butyrate and trichostatin A to offspring of RDP normalized pulmonary DNA methylation and vascular function. Finally, administration of the nitroxide Tempol to the mother during RDP prevented vascular dysfunction and dysmethylation in the offspring. These findings demonstrate that in mice undernutrition during gestation induces pulmonary vascular dysfunction in the offspring by an epigenetic mechanism. A similar mechanism may be involved in the fetal programming of vascular dysfunction in humans.
Resumo:
OBJECTIVES: This study sought to assess the vascular response of overlapping Absorb stents compared with overlapping newer-generation everolimus-eluting metallic platform stents (Xience V [XV]) in a porcine coronary artery model. BACKGROUND: The everolimus-eluting bioresorbable vascular scaffold (Absorb) is a novel approach to treating coronary lesions. A persistent inflammatory response, fibrin deposition, and delayed endothelialization have been reported with overlapping first-generation drug-eluting stents. METHODS: Forty-one overlapping Absorb and overlapping Xience V (XV) devices (3.0 × 12 mm) were implanted in the main coronary arteries of 17 nonatherosclerotic pigs with 10% overstretch. Implanted coronary arteries were evaluated by optical coherence tomography (OCT) at 28 days (Absorb n = 11, XV n = 7) and 90 days (Absorb n = 11, XV n = 8), with immediate histological evaluation following euthanasia at the same time points. One animal from each time point was evaluated with scanning electron microscopy alone. A total of 1,407 cross sections were analyzed by OCT and 148 cross sections analyzed histologically. RESULTS: At 28 days in the overlap, OCT analyses indicated 80.1% of Absorb struts and 99.4% of XV struts to be covered (p < 0.0001), corresponding to histological observations of struts with cellular coverage of 75.4% and 99.6%, respectively (p < 0.001). Uncovered struts were almost exclusively related to the presence of "stacked" Absorb struts, that is, with a direct overlay configuration. At 90 days, overlapping Absorb and overlapping XV struts demonstrated >99% strut coverage by OCT and histology, with no evidence of a significant inflammatory process, and comparable % volume obstructions. CONCLUSIONS: In porcine coronary arteries implanted with overlapping Absorb or overlapping XV struts, strut coverage is delayed at 28 days in overlapping Absorb, dependent on the overlay configuration of the thicker Absorb struts. At 90 days, both overlapping Absorb and overlapping XV have comparable strut coverage. The implications of increased strut thickness may have important clinical and design considerations for bioresorbable platforms.
Resumo:
Chronic inflammation is a fundamental aspect of metabolic disorders such as obesity, diabetes and cardiovascular disease. Cholesterol crystals are metabolic signals that trigger sterile inflammation in atherosclerosis, presumably by activating inflammasomes for IL-1β production. We found here that atherogenesis was mediated by IL-1α and we identified fatty acids as potent inducers of IL-1α-driven vascular inflammation. Fatty acids selectively stimulated the release of IL-1α but not of IL-1β by uncoupling mitochondrial respiration. Fatty acid-induced mitochondrial uncoupling abrogated IL-1β secretion, which deviated the cholesterol crystal-elicited response toward selective production of IL-1α. Our findings delineate a previously unknown pathway for vascular immunopathology that links the cellular response to metabolic stress with innate inflammation, and suggest that IL-1α, not IL-1β, should be targeted in patients with cardiovascular disease.
Resumo:
High resolution, vascular magnetic resonance imaging of the spine region in small animals poses several challenges. The small anatomical features, extravascular diffusion, and the low signal-to-noise ratio limit the use of conventional contrast agents. We hypothesize that a long circulating, intravascular liposomal-encapsulated MR contrast agent (liposomal-Gd) would facilitate visualization of small anatomical features of the perispinal vasculature not visible with conventional contrast agent (Gd-DTPA).
Resumo:
BACKGROUND AND PURPOSE: High-resolution, vascular MR imaging of the spine region in small animals poses several challenges. The small anatomic features, extravascular diffusion, and low signal-to-noise ratio limit the use of conventional contrast agents. We hypothesize that a long-circulating, intravascular liposomal-encapsulated MR contrast agent (liposomal-Gd) would facilitate visualization of small anatomic features of the perispinal vasculature not visible with conventional contrast agent (gadolinium-diethylene-triaminepentaacetic acid [Gd-DTPA]). METHODS: In this study, high-resolution MR angiography of the spine region was performed in a rat model using a liposomal-Gd, which is known to remain within the blood pool for an extended period. The imaging characteristics of this agent were compared with those of a conventional contrast agent, Gd-DTPA. RESULTS: The liposomal-Gd enabled acquisition of high quality angiograms with high signal-to-noise ratio. Several important vascular features, such as radicular arteries, posterior spinal vein, and epidural venous plexus were visualized in the angiograms obtained with the liposomal agent. The MR angiograms obtained with conventional Gd-DTPA did not demonstrate these vessels clearly because of marked extravascular soft-tissue enhancement that obscured the vasculature. CONCLUSIONS: This study demonstrates the potential benefit of long-circulating liposomal-Gd as a MR contrast agent for high-resolution vascular imaging applications.