955 resultados para Chlorophyll a, standard deviation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The subgrid-scale spatial variability in cloud water content can be described by a parameter f called the fractional standard deviation. This is equal to the standard deviation of the cloud water content divided by the mean. This parameter is an input to schemes that calculate the impact of subgrid-scale cloud inhomogeneity on gridbox-mean radiative fluxes and microphysical process rates. A new regime-dependent parametrization of the spatial variability of cloud water content is derived from CloudSat observations of ice clouds. In addition to the dependencies on horizontal and vertical resolution and cloud fraction included in previous parametrizations, the new parametrization includes an explicit dependence on cloud type. The new parametrization is then implemented in the Global Atmosphere 6 (GA6) configuration of the Met Office Unified Model and used to model the effects of subgrid variability of both ice and liquid water content on radiative fluxes and autoconversion and accretion rates in three 20-year atmosphere-only climate simulations. These simulations show the impact of the new regime-dependent parametrization on diagnostic radiation calculations, interactive radiation calculations and both interactive radiation calculations and in a new warm microphysics scheme. The control simulation uses a globally constant f value of 0.75 to model the effect of cloud water content variability on radiative fluxes. The use of the new regime-dependent parametrization in the model results in a global mean which is higher than the control's fixed value and a global distribution of f which is closer to CloudSat observations. When the new regime-dependent parametrization is used in radiative transfer calculations only, the magnitudes of short-wave and long-wave top of atmosphere cloud radiative forcing are reduced, increasing the existing global mean biases in the control. When also applied in a new warm microphysics scheme, the short-wave global mean bias is reduced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The long duration of the 2010 Eyjafjallajökull eruption provided a unique opportunity to measure a widely dispersed volcanic ash cloud. Layers of volcanic ash were observed by the European Aerosol Research Lidar Network with a mean depth of 1.2 km and standard deviation of 0.9 km. In this paper we evaluate the ability of the Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME) to simulate the observed ash layers and examine the processes controlling their depth. NAME simulates distal ash layer depths exceptionally well with a mean depth of 1.2 km and standard deviation of 0.7 km. The dominant process determining the depth of ash layers over Europe is the balance between the vertical wind shear (which acts to reduce the depth of the ash layers) and vertical turbulent mixing (which acts to deepen the layers). Interestingly, differential sedimentation of ash particles and the volcano vertical emission profile play relatively minor roles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study has investigated serial (temporal) clustering of extra-tropical cyclones simulated by 17 climate models that participated in CMIP5. Clustering was estimated by calculating the dispersion (ratio of variance to mean) of 30 December-February counts of Atlantic storm tracks passing nearby each grid point. Results from single historical simulations of 1975-2005 were compared to those from historical ERA40 reanalyses from 1958-2001 ERA40 and single future model projections of 2069-2099 under the RCP4.5 climate change scenario. Models were generally able to capture the broad features in reanalyses reported previously: underdispersion/regularity (i.e. variance less than mean) in the western core of the Atlantic storm track surrounded by overdispersion/clustering (i.e. variance greater than mean) to the north and south and over western Europe. Regression of counts onto North Atlantic Oscillation (NAO) indices revealed that much of the overdispersion in the historical reanalyses and model simulations can be accounted for by NAO variability. Future changes in dispersion were generally found to be small and not consistent across models. The overdispersion statistic, for any 30 year sample, is prone to large amounts of sampling uncertainty that obscures the climate change signal. For example, the projected increase in dispersion for storm counts near London in the CNRMCM5 model is 0.1 compared to a standard deviation of 0.25. Projected changes in the mean and variance of NAO are insufficient to create changes in overdispersion that are discernible above natural sampling variations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The topography of many floodplains in the developed world has now been surveyed with high resolution sensors such as airborne LiDAR (Light Detection and Ranging), giving accurate Digital Elevation Models (DEMs) that facilitate accurate flood inundation modelling. This is not always the case for remote rivers in developing countries. However, the accuracy of DEMs produced for modelling studies on such rivers should be enhanced in the near future by the high resolution TanDEM-X WorldDEM. In a parallel development, increasing use is now being made of flood extents derived from high resolution Synthetic Aperture Radar (SAR) images for calibrating, validating and assimilating observations into flood inundation models in order to improve these. This paper discusses an additional use of SAR flood extents, namely to improve the accuracy of the TanDEM-X DEM in the floodplain covered by the flood extents, thereby permanently improving this DEM for future flood modelling and other studies. The method is based on the fact that for larger rivers the water elevation generally changes only slowly along a reach, so that the boundary of the flood extent (the waterline) can be regarded locally as a quasi-contour. As a result, heights of adjacent pixels along a small section of waterline can be regarded as samples with a common population mean. The height of the central pixel in the section can be replaced with the average of these heights, leading to a more accurate estimate. While this will result in a reduction in the height errors along a waterline, the waterline is a linear feature in a two-dimensional space. However, improvements to the DEM heights between adjacent pairs of waterlines can also be made, because DEM heights enclosed by the higher waterline of a pair must be at least no higher than the corrected heights along the higher waterline, whereas DEM heights not enclosed by the lower waterline must in general be no lower than the corrected heights along the lower waterline. In addition, DEM heights between the higher and lower waterlines can also be assigned smaller errors because of the reduced errors on the corrected waterline heights. The method was tested on a section of the TanDEM-X Intermediate DEM (IDEM) covering an 11km reach of the Warwickshire Avon, England. Flood extents from four COSMO-SKyMed images were available at various stages of a flood in November 2012, and a LiDAR DEM was available for validation. In the area covered by the flood extents, the original IDEM heights had a mean difference from the corresponding LiDAR heights of 0.5 m with a standard deviation of 2.0 m, while the corrected heights had a mean difference of 0.3 m with standard deviation 1.2 m. These figures show that significant reductions in IDEM height bias and error can be made using the method, with the corrected error being only 60% of the original. Even if only a single SAR image obtained near the peak of the flood was used, the corrected error was only 66% of the original. The method should also be capable of improving the final TanDEM-X DEM and other DEMs, and may also be of use with data from the SWOT (Surface Water and Ocean Topography) satellite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accurate knowledge of the location and magnitude of ocean heat content (OHC) variability and change is essential for understanding the processes that govern decadal variations in surface temperature, quantifying changes in the planetary energy budget, and developing constraints on the transient climate response to external forcings. We present an overview of the temporal and spatial characteristics of OHC variability and change as represented by an ensemble of dynamical and statistical ocean reanalyses (ORAs). Spatial maps of the 0–300 m layer show large regions of the Pacific and Indian Oceans where the interannual variability of the ensemble mean exceeds ensemble spread, indicating that OHC variations are well-constrained by the available observations over the period 1993–2009. At deeper levels, the ORAs are less well-constrained by observations with the largest differences across the ensemble mostly associated with areas of high eddy kinetic energy, such as the Southern Ocean and boundary current regions. Spatial patterns of OHC change for the period 1997–2009 show good agreement in the upper 300 m and are characterized by a strong dipole pattern in the Pacific Ocean. There is less agreement in the patterns of change at deeper levels, potentially linked to differences in the representation of ocean dynamics, such as water mass formation processes. However, the Atlantic and Southern Oceans are regions in which many ORAs show widespread warming below 700 m over the period 1997–2009. Annual time series of global and hemispheric OHC change for 0–700 m show the largest spread for the data sparse Southern Hemisphere and a number of ORAs seem to be subject to large initialization ‘shock’ over the first few years. In agreement with previous studies, a number of ORAs exhibit enhanced ocean heat uptake below 300 and 700 m during the mid-1990s or early 2000s. The ORA ensemble mean (±1 standard deviation) of rolling 5-year trends in full-depth OHC shows a relatively steady heat uptake of approximately 0.9 ± 0.8 W m−2 (expressed relative to Earth’s surface area) between 1995 and 2002, which reduces to about 0.2 ± 0.6 W m−2 between 2004 and 2006, in qualitative agreement with recent analysis of Earth’s energy imbalance. There is a marked reduction in the ensemble spread of OHC trends below 300 m as the Argo profiling float observations become available in the early 2000s. In general, we suggest that ORAs should be treated with caution when employed to understand past ocean warming trends—especially when considering the deeper ocean where there is little in the way of observational constraints. The current work emphasizes the need to better observe the deep ocean, both for providing observational constraints for future ocean state estimation efforts and also to develop improved models and data assimilation methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An extensive experimental and simulation study is carried out in conventional magnetorheological fluids formulated by dispersion of mixtures of carbonyl iron particles having different sizes in Newtonian carriers. Apparent yield stress data are reported for a wide range of polydispersity indexes (PDI) from PDI = 1.63 to PDI = 3.31, which for a log-normal distribution corresponds to the standard deviation ranging from to . These results demonstrate that the effect of polydispersity is negligible in this range in spite of exhibiting very different microstructures. Experimental data in the magnetic saturation regime are in quantitative good agreement with particle-level simulations under the assumption of dipolar magnetostatic forces. The insensitivity of the yield stresses to the polydispersity can be understood from the interplay between the particle cluster size distribution and the packing density of particles inside the clusters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes new advances in the exploitation of oxygen A-band measurements from POLDER3 sensor onboard PARASOL, satellite platform within the A-Train. These developments result from not only an account of the dependence of POLDER oxygen parameters to cloud optical thickness τ and to the scene's geometrical conditions but also, and more importantly, from the finer understanding of the sensitivity of these parameters to cloud vertical extent. This sensitivity is made possible thanks to the multidirectional character of POLDER measurements. In the case of monolayer clouds that represent most of cloudy conditions, new oxygen parameters are obtained and calibrated from POLDER3 data colocalized with the measurements of the two active sensors of the A-Train: CALIOP/CALIPSO and CPR/CloudSat. From a parameterization that is (μs, τ) dependent, with μs the cosine of the solar zenith angle, a cloud top oxygen pressure (CTOP) and a cloud middle oxygen pressure (CMOP) are obtained, which are estimates of actual cloud top and middle pressures (CTP and CMP). Performances of CTOP and CMOP are presented by class of clouds following the ISCCP classification. In 2008, the coefficient of the correlation between CMOP and CMP is 0.81 for cirrostratus, 0.79 for stratocumulus, 0.75 for deep convective clouds. The coefficient of the correlation between CTOP and CTP is 0.75, 0.73, and 0.79 for the same cloud types. The score obtained by CTOP, defined as the confidence in the retrieval for a particular range of inferred value and for a given error, is higher than the one of MODIS CTP estimate. Scores of CTOP are the highest for bin value of CTP superior in numbers. For liquid (ice) clouds and an error of 30 hPa (50 hPa), the score of CTOP reaches 50% (70%). From the difference between CTOP and CMOP, a first estimate of the cloud vertical extent h is possible. A second estimate of h comes from the correlation between the angular standard deviation of POLDER oxygen pressure σPO2 and the cloud vertical extent. This correlation is studied in detail in the case of liquid clouds. It is shown to be spatially and temporally robust, except for clouds above land during winter months. The analysis of the correlation's dependence on the scene's characteristics leads to a parameterization providing h from σPO2. For liquid water clouds above ocean in 2008, the mean difference between the actual cloud vertical extent and the one retrieved from σPO2 (from the pressure difference) is 5 m (−12 m). The standard deviation of the mean difference is close to 1000 m for the two methods. POLDER estimates of the cloud geometrical thickness obtain a global score of 50% confidence for a relative error of 20% (40%) of the estimate for ice (liquid) clouds over ocean. These results need to be validated outside of the CALIPSO/CloudSat track.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present new inferences about cloud vertical structures from multidirectionnal measurements in the oxygen A-band. The analysis of collocated data provided by instruments onboard satellite platforms within the A-Train, as well as simulations have shown that for monolayered clouds, the cloud oxygen pressure PO2PO2 derived from the POLDER3 instrument was sensitive to the cloud vertical structure in two ways: First, PO2PO2 is actually close to the pressure of the geometrical middle of cloud and we propose a method to correct it to get the cloud top pressure (CTP), and then to obtain the cloud geometrical extent. Second, for the liquid water clouds, the angular standard deviation σPO2σPO2 of PO2PO2 is correlated with the geometrical extent of cloud layers, which makes possible a second estimation of the cloud geometrical thickness. The determination of the vertical location of cloud layers from passive measurements, eventually completed from other observations, would be useful in many applications for which cloud macrophysical properties are needed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The co-polar correlation coefficient (ρhv) has many applications, including hydrometeor classification, ground clutter and melting layer identification, interpretation of ice microphysics and the retrieval of rain drop size distributions (DSDs). However, we currently lack the quantitative error estimates that are necessary if these applications are to be fully exploited. Previous error estimates of ρhv rely on knowledge of the unknown "true" ρhv and implicitly assume a Gaussian probability distribution function of ρhv samples. We show that frequency distributions of ρhv estimates are in fact highly negatively skewed. A new variable: L = -log10(1 - ρhv) is defined, which does have Gaussian error statistics, and a standard deviation depending only on the number of independent radar pulses. This is verified using observations of spherical drizzle drops, allowing, for the first time, the construction of rigorous confidence intervals in estimates of ρhv. In addition, we demonstrate how the imperfect co-location of the horizontal and vertical polarisation sample volumes may be accounted for. The possibility of using L to estimate the dispersion parameter (µ) in the gamma drop size distribution is investigated. We find that including drop oscillations is essential for this application, otherwise there could be biases in retrieved µ of up to ~8. Preliminary results in rainfall are presented. In a convective rain case study, our estimates show µ to be substantially larger than 0 (an exponential DSD). In this particular rain event, rain rate would be overestimated by up to 50% if a simple exponential DSD is assumed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An inappropriate prosthetic fit could cause stress over the interface implant/bone. The objective of this study was to compare stresses transmitted to implants from frameworks cast using different materials and to investigate a possible correlation between vertical misfits and these stresses. Fifteen one-piece cast frameworks simulating bars for fixed prosthesis in a model with five implants were fabricated and arranged into three different groups according to the material used for casting: CP Ti (commercially pure titanium), Co-Cr (cobalt-chromium) or Ni-Cr-Ti (nickel-chromium-titanium) alloys. Each framework was installed over the metal model with all screws tightened to a 10 N cm torque and then, vertical misfits were measured using an optical microscope. The stresses transmitted to implants were measured using quantitative photoelastic analysis in values of maximum shear stress (T), when each framework was tightened to the photoelastic model to a 10 N cm standardized torque. Stress data were statistically analyzed using one-way ANOVA and Tukey`s test and correlation tests were performed using Pearson`s rank correlation (alpha = 0.05). Mean and standard deviation values of vertical misfit are presented for CP Ti (22.40 +/- 9.05 mu m), Co-Cr (66.41 +/- 35.47 mu m) and Ni-Cr-Ti (32.20 +/- 24.47 mu m). Stresses generated by Co-Cr alloy (tau = 7.70 +/- 2.16 kPa) were significantly higher than those generated by CP Ti (tau = 5.86 +/- 1.55 kPa, p = 0.018) and Ni-Cr-Ti alloy (tau =5.74 +/- 3.05 kPa, p = 0.011), which were similar (p = 0.982). Correlations between vertical misfits and stresses around the implants were not significant as for any evaluated materials. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: We investigated whether lifestyle-induced changes in dietary fat quality are related to Improvements on glucose metabolism disturbances in Japanese Brazilians at high risk of type 2 diabetes Methods: One hundred forty-eight first- and second-generation subjects with impaired glucose tolerance or impaired fasting glycemia who attended a lifestyle intervention program for 12 mo were studied in the city of Bauru. State of Sao Paulo, Brazil Dietary fatty acid intakes at baseline and after 12 mo were estimated using three 24-h recalls. The effect of dietary fat intake on glucose metabolism was investigated by multiple logistic regression models Results: At baseline, mean standard deviation age and body mass index were 60 II y and 25 5 4.2 kg/m2, respectively After 12 mo. 92 subjects had normal plasma glucose levels and 56 remained in prediabetic conditions. Using logistic regression models adjusted for age, gender, generation, basal intake of explanatory nutrient, energy intake, physical activity, and waist circumference, the odds ratios (95% confidence intervals) for reversion to normoglycemia were 3 14 (1 22-8 10) in the second wrote of total w-3 fatty acid, 4 26 (1.34-13 57) in the second tunic of eicosapentaenoic acid, and 280 (1 10-7.10) in the second tertile of linolenic acid. Similarly. subjects in the highest wrote of w-3.w-6 fatty acid ratio showed a higher chance of improving glucose disturbances (2 51, 1.01-6.37) Conclusions: Our findings support the evidence of an independent protective effect of omega-3 fatty acid and of a higher omega-3:omega-6 fatty acid ratio on the glucose metabolism of high-risk individuals (C) 2010 Elsevier Inc All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective Underreporting of energy intake is prevalent in food surveys, but there is controversy about which dietary assessment method provides greater underreporting rates. Our objective is to compare validity of self-reported energy intake obtained by three dietary assessment methods with total energy expenditure (TEE) obtained by doubly labeled water (DLW) among Brazilian women. Design We used a cross-sectional study. Subjects/setting Sixty-five females aged 18 to 57 years (28 normal-weight, 10 over-weight, and 27 obese) were recruited from two universities to participate. Main outcome measures TEE determined by DLW, energy intake estimated by three 24-hour recalls, 3-day food record, and a food frequency questionnaire (FFQ). Statistical analyses performed Regression and analysis of variance with repeated measures compared TEE and energy intake values, and energy intake-to-TEE ratios and energy intake-TEE values between dietary assessment methods. Bland and Altman plots were provided for each method. chi(2) test compared proportion of underreporters between the methods. Results Mean TEE was 2,622 kcal (standard deviation [SD] =490 kcal), while mean energy intake was 2,078 kcal (SD=430 kcal) for the diet recalls; 2,044 kcal (SD=479 kcal) for the food record and 1,984 kcal (SD=832 kcal) for the FFQ (all energy intake values significantly differed from TEE; P<0.0001). Bland and Altman plots indicated great dispersion, negative mean differences between measurements, and wide limits of agreement. Obese subjects underreported more than normal-weight subjects in the diet recalls and in the food records, but not in the FFQ. Years of education, income and ethnicity were associated with reporting accuracy. Conclusions The FFQ produced greater under- and overestimation of energy intake. Underreporting of energy intake is a serious and prevalent error in dietary self-reports provided by Brazilian women, as has been described in studies conducted in developed countries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study aimed at verifying the associated factors of self-perceived body changes in adults living with HIV in highly-active antiretroviral therapy (HAART) in the city of Sao Paulo, Brazil. This cross-sectional study was conducted among people living with HIV on HAART for at least three months. A standardized questionnaire was used for assessing self-perceived body changes. Associated factors relating to self-reported body changes in people living with HIV (PLHIV) were assessed with Student`s t-test and chi-square test. In total, 507 patients were evaluated. The mean time since diagnosis was 6.6 years [standard deviation (SD)+/-4.1], and the mean duration of HAART was 5.1 years (SD+/-3.3). Self-perceived body changes were reported by 79.5% of the participants and were associated with viral load and duration of HAART. Fibre intake was lower among males who gained in abdominal fat (p=0.035). HAART-related body changes were reported by the large majority of the population and were associated with demographic and clinical variables.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aimed to investigate the effect of 830 nm low-level laser therapy (LLLT) on skeletal muscle fatigue. Ten healthy male professional volleyball players entered a crossover randomized double-blinded placebo-controlled trial. Active LLLT (830 nm wavelength, 100 mW output, spot size 0.0028 cm(2), 200 s total irradiation time) or an identical placebo LLLT was delivered to four points on the biceps humeri muscle immediately before exercises. All subjects performed voluntary biceps humeri contractions with a load of 75% of the maximum voluntary contraction (MVC) force until exhaustion. After active LLLT the mean number of repetitions was significantly higher than after placebo irradiation [mean difference 4.5, standard deviation (SD) +/- 6.0, P = 0.042], the blood lactate levels increased after exercises, but there was no significant difference between the treatments. We concluded that 830 nm LLLT can delay the onset of skeletal muscle fatigue in high-intensity exercises, in spite of increased blood lactate levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To describe corneal graft survival and visual outcome after therapeutic penetrating keratoplasty in patients with Acanthamoeba keratitis (AK) that is unresponsive to clinical treatment. Methods: Retrospective study. Thirty-two patients with AK who underwent therapeutic penetrating keratoplasty (tPK) from August 1996 to August 2005 were included. Data relating to clinical features, visual acuity, surgical technique, graft survival and complications were collected. Graft survival was evaluated by the Kaplan-Meier method and comparisons were performed using the Log-rank test. Results: Most patients (62.5%) were female. Mean age [+/- standard deviation (SD)] was 35 (+/- 13) years (range 15-68 years). All patients were contact lens wearers. Eighteen patients (56%) presented paralytic mydriasis and glaucoma during the treatment. Thirteen patients (40%) developed glaucoma after surgery; eight of them (61%) required a second PK because of graft failure. Of the 32 keratoplasty eyes, 56.2% presented graft failure at any follow-up point. Forty-five per cent of graft failures occurred before the 12 month follow-up, so 55% remained clear in the first year after surgery. Twelve patients underwent a second PK; seven of them failed and 45% were clear at 1 year. Two patients presented graft recurrence of amoebic infection. There was no significant difference in graft survival when eyes with or without mydriasis were compared (P = 0.40). Eyes with glaucoma presented a significantly shorter graft survival (P = 0.01). Conclusion: Penetrating keratoplasty is a treatment option for eyes that are unresponsive to clinical treatment infections. However, graft survival is poor; postoperative glaucoma is frequent and is associated with shorter graft survival.