944 resultados para Chlorine doping
Resumo:
We predict by first-principles calculations that p-doped graphane is an electron-phonon superconductor with a critical temperature above the boiling point of liquid nitrogen. The unique strength of the chemical bonds between carbon atoms and the large density of electronic states at the Fermi energy arising from the reduced dimensionality give rise to a giant Kohn anomaly in the optical phonon dispersions and push the superconducting critical temperature above 90 K. As evidence of graphane was recently reported, and doping of related materials such as graphene, diamond, and carbon nanostructures is well established, superconducting graphane may be feasible.
Resumo:
The study was conducted to investigate the efficacy of chlorine and UV irradiation in disinfecting aquarium effluent. A non-agglutinating, a virulent strain of Aeromonas salmonicida (NCIMB 11 02) was used as the test organism. Effluents from a fish tank were inoculated with a suspension of test organisms and subsequently treated with different concentrations of hypochlorite and UV irradiation separately and simultaneously. When used alone, 1.0 ppm hypochlorite reduced the viable cell count from 6.5 log to 3.0 log within 20 minutes of contact period. On the other hand, when used in combination with UV irradiation only 0.5 ppm hypochlorite exerted the same bactericidal effect within the same contact period as was observed with 1.0 ppm hypochlorite alone. This result indicated that required dose of disinfectant for the disinfection of aquarium effluents can be considerably reduced when it is used in combination with UV irradiation.
Resumo:
Nitrogen can have numerous effects on diamond-like carbon: it can dope, it can form the hypothetical superhard compound C3N4, or it can create fullerene-like bonding structures. We studied amorphous carbon nitrogen films deposited by a filtered cathodic vacuum arc as a function of nitrogen content, ion energy and deposition temperature. The incorporation of nitrogen from 10-2 to 10 at% was measured by secondary ion mass spectrometry and elastic recoil detection analysis and was found to vary slightly sublinearly with N2 partial pressure during deposition. In the doping regime from 0 to about 0.4% N, the conductivity changes while the sp3 content and optical gap remain constant. From 0.4 to approximately 10% N, existing sp2 sites condense into clusters and reduce the band gap. Nitrogen contents over 10% change the bonding from mainly sp3 to mainly sp2. Ion energies between 20 and 250 eV do not greatly modify this behaviour. Deposition at higher temperatures causes a sudden loss of sp3 bonding above about 150 °C. Raman spectroscopy and optical gap data show that existing sp2 sites begin to cluster below this temperature, and the clustering continues above this temperature. This transition is found to vary only weakly with nitrogen addition, for N contents below 10%.
Resumo:
This paper presents an analytical model for the determination of the basic breakdown properties of three-dimensional (3D)-RESURF/CoolMOS/super junction type structures. To account for the two-dimensional (2D) effect of the 3D-RESURF action, 2D models of the electric field distribution are developed. Based on these, expressions are derived for the breakdown voltage as a function of doping concentration and physical dimensions. In addition to cases where the drift regions are fully depleted, the model developed is also applicable to situations involving drift regions which are almost depleted. Accuracy of the analytical approach is verified by comparison with numerical results obtained from the MEDICI device simulator.
Resumo:
We comment on the paper by N Hari Babu et al. (2002 Supercond. Sci. Technol. 15 104-10) and point out misinterpretations of the chemical composition of U-bearing deposits observed in Y123. The observed small deposits are those of new compounds which do not contain Cu, rather than refined Y211 plus U, as stated by the authors. We further note that extensive literature, not quoted, is in disagreement by nearly an order of magnitude concerning the values of Pt and U doping at which the optimum value of Jc is obtained. Other related information, presently in the literature, which may be helpful to those working with this high temperature superconducting chemical system, is presented.
Resumo:
There has been a growing interest in hydrogenated silicon carbide films (SiC:H) prepared using the electron cyclotron resonance-chemical vapour deposition (ECR-CVD) technique. Using the ECR-CVD technique, SiC:H films have been prepared from a mixture of methane, silane and hydrogen, with phosphine as the doping gas. The effects of changes in the microwave power (from 150 to 900 W) on the film properties were investigated in a series of phosphorus-doped SiC:H films. In particular, the changes in the deposition rate, optical bandgap, activation energy and conductivity were investigated in conjunction with results from Raman scattering and Fourier transform infra-red (FTIR) analysis. It was found that increase in the microwave power has the effect of enhancing the formation of the silicon microcrystalline phase in the amorphous matrix of the SiC:H films. This occurs in correspondence to a rapid increase in the conductivity and a reduction in the activation energy, both of which exhibit small variations in samples deposited at microwave powers exceeding 500 W. Analysis of IR absorption results suggests that hydrogen is bonded to silicon in the Si-H stretching mode and to carbon in the sp3 CHn rocking/wagging and bending mode in films deposited at higher microwave powers.
Resumo:
In order to develop materials that exhibit enhanced flexoelectric switching in the chiral nematic phase we have identified mesogenic units that display inherently strong flexoelectric coupling capabilities. Here we examine the oxycyanobiphenyl (OCB) moiety: homologues from the nOCB series exhibit significant electro-optic switching effects when doped with a highly chiral additive. Here we have examined lower dielectric anisotropy materials, since they allow the flexoelectric response to be extended to high field amplitudes. We show that dielectric coupling strength can be low in symmetric bimesogenic molecules. The flexoelectric response of such a molecular structure is tested by doping a homologue from the series CBOnOCB with a chiral additive: very significantly we find that the optic axis is rotated through 2φ=45° in <50 μs on reversing the polarity of the field (amplitude E=±6 V μm-1). Subsequently we have synthesized room temperature chiral nematic materials that exhibit 2φ≥90° at E≈10 V μm-1. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group.
Resumo:
process is described for the preparation of chitosan from prawn waste. The process involves extraction of protein using 0.5% sodium hydroxide solution, bleaching the protein free mass with bleach liquor containing 0.3-0.5% available chlorine followed by demineralisation with 1.25 N hydrochloric acid in the cold and deacetylation using 1:1 (w/w) sodium hydroxide solution at 100°C for 2 hours.
Resumo:
The authors have doped RABiTS coated conductor tapes with Ca in an attempt to enhance the transport properties. By diffusing Ca into the YBCO film from a CaZrO3 overlayer, the authors have been able to preferentially dope the grain boundaries of the superconductor. Hence it has been possible to obtain doped tapes which do not have a significantly degraded T-c. The authors have measured the critical currents of doped and undoped samples over a wide range of temperature, magnetic field, and magnetic field angle in order to study the effect of Ca on the grain boundaries. The authors find that doping using short anneal times produces enhanced critical currents in large magnetic fields.
Resumo:
The effect of KI encapsulation in narrow (HiPCO) single-walled carbon nanotubes is studied via Raman spectroscopy and optical absorption. The analysis of the data explores the interplay between strain and structural modifications, bond-length changes, charge transfer, and electronic density of states. KI encapsulation appears to be consistent with both charge transfer and strain that shrink both the C-C bonds and the overall nanotube along the axial direction. The charge transfer in larger semiconducting nanotubes is low and comparable with some cases of electrochemical doping, while optical transitions between pairs of singularities of the density of states are quenched for narrow metallic nanotubes. Stronger changes in the density of states occur in some energy ranges and are attributed to polarization van der Waals interactions caused by the ionic encapsulate. Unlike doping with other species, such as atoms and small molecules, encapsulation of inorganic compounds via the molten-phase route provides stable effects due to maximal occupation of the nanotube inner space.
Resumo:
This work is aimed at optimising the static performance of a high voltage SOI LDMOSFET. Starting with a conventional LDMOSFET, 2D and 3D numerical simulation models, able to accurately match datasheet values, have been developed. Moving from the original device, several design techniques have been investigated with the target of improving the breakdown voltage and the ON-state resistance. The considered design techniques are based on the modification of the doping profile of the drift region and the Superjunction design technique. The paper shows that a single step doping within the drift region is the best design choice for the considered device and is found to give a 24% improvement in the breakdown voltage and a 17% reduction of the ON-state resistance. © 2011 IEEE.
Resumo:
This paper examines the possibility of using a background gas medium to enhance the current available from low threshold carbon cathodes. The field emission current is used to initiate a plasma in the gas medium, and thereby achieve a current multiplication effect. Results on the variation of anode current as a function of electric field and gas pressure are presented. These are compared with model calculations to verify the principles of operation. The influence of ion bombardment on the long term performance thin film carbon cathodes is examined for He and Ar multiplication plasmas. A measure of the influence of current multiplication on display quality is presented by examining light output from two standard low voltage phosphors. Also studied are the influence of doping the carbon with N to lower the threshold voltage for emission as well as the consequent impact on anode current from the plasma.
Resumo:
A low specific on-resistance (R-{{\rm on}, {\rm sp}}) integrable silicon-on-insulator (SOI) MOSFET is proposed, and its mechanism is investigated by simulation. The SOI MOSFET features double trenches and dual gates (DTDG SOI): an oxide trench in the drift region, a buried gate inset in the oxide trench, and another trench gate (TG) extended to a buried oxide layer. First, the dual gates form dual conduction channels, and the extended gate widens the vertical conduction area; both of which sharply reduce R-{{\rm on}, {\rm sp}}. Second, the oxide trench folds the drift region in the vertical direction, resulting in a reduced device pitch and R-{{\rm on}, {\rm sp}}. Third, the oxide trench causes multidirectional depletion. This not only enhances the reduced surface field effect and thus reshapes the electric field distribution but also increases the drift doping concentration, leading to a reduced R-{{\rm on}, {\rm sp}} and an improved breakdown voltage (BV). Compared with a conventional SOI lateral Double-diffused metal oxide semiconductor (LDMOS), the DTDG MOSFET increases BV from 39 to 92 V at the same cell pitch or decreases R-{{\rm on}, { \rm sp}} by 77% at the same BV by simulation. Finally, the TG extended synchronously acts as an isolation trench between the high/low-voltage regions in a high-voltage integrated circuit, saving the chip area and simplifying the isolation process. © 2006 IEEE.
Resumo:
The probe tip is pivotal in determining the resolution and nature of features observed in the Scanning Tunnelling Microscope (STM). We have augmented a conventional Pt/Ir metallic tip with a hydrothermally grown ZnO nanowire (NW). Atomic resolution imaging of graphite is attained. Current-voltage (IV) characteristics demonstrate an asymmetry stemming from the unintentional n-type doping of the ZnO NW, whereas the expected Schottky barrier at the ZnO-Pt/Ir interface is shown to have negligible effect. Moreover the photoconductivity of the system is investigated, paving the way towards a photodetector capable of atomic resolution.
Resumo:
This review summarises the recent advances in the field of silicon nanowire electronics from bottom-up assembled materials. The aim is to draw a comparison between bottom-up and top-down approaches, examining respective achievements and evaluating advantages and disadvantages of each methodology. Existing techniques for synthesis and doping are discussed to provide the framework in which practical electronic applications can be developed. Next, key device categories are reviewed, emphasising current challenges and proposed solutions. Finally, field perspectives are outlined. © 2012 Elsevier Ltd.