1000 resultados para Chemical SprayPyrolysis
Resumo:
Bond distances, vibrational frequencies, dissociation energies, electron affinities, ionization potentials and dipole moments of the title molecules in neutral and charged ions were studied by use of density functional method. Ground states for each molecule were assigned. The calculated bond distance decreases with the increasing of atomic number of 4d metals, reaches minimum at RhS, then increases. For cationic molecules, the calculated bond distance decreases to the minimum at MoS+, then increases. The calculated vibrational frequency decreases from YS(YS+) to PdS(PdS+) for both neutral and cationic molecules. The bond ionic character decreases from YS(YS+) to PdS(PdS+) for neutral and cationic molecules. The bonding patterns are discussed and compared with the available studies.
Resumo:
This work herein reports the approach for the simultaneous determination of heavy metal ions including cadmium (Cd(II)), lead (Pb(II)), and chromium (Cr(VI)) using a bismuth film electrode (BFE) by anodic stripping voltammertry (ASV). The BFE used was plated in situ. Due to the reduction of Cr(VI) with H2O2 in the acid medium, on one hand, the Cr(III) was produced and Cr(VI) was indirectly detected by monitoring the content of Cr(III) using square-wave ASV. On the other hand, Pb(II) was also released from the complex between Pb(II) and Cr(VI). Furthermore, the coexistence of the Cd(II) was also simultaneously detected with Pb(II) and Cr(VI) in this system as a result of the formation of an alloy with Bi. The detection limits of this method were 1.39 ppb for Cd(II), 2.47 ppb for Pb(II) and 5.27 ppb for Cr(VI) with a preconcentration time of 120 s under optimal conditions (S/N = 3), respectively. Furthermore, the sensitivity of this method can be improved by controlling the deposition time or by using a cation-exchange polymer (such as Nafion) modified electrode.
Resumo:
Uniform octahedral LuVO4 microcrystals have been successfully prepared through a designed two-step hydrothermal method. One-dimensional lutetium precursor was first prepared through a simple hydrothermal route. Subsequently, a well-shaped octahedral LuVO4 sample was synthesized at the expense of the wirelike precursors during the hydrothermal process. The whole process in this method was carried out in aqueous conditions without the use of any organic solvents, surfactant, or catalyst. The conversion process from nanowire precursor to octahedral product has been investigated in detail. The LuVO4 : Ln(3+) (Ln Eu, Dy, Sm, and Er) phosphors show strong light emissions with different colors coming from different activator ions under ultraviolet light excitation or low-voltage electron beam excitation. Furthermore, this general and facile method may be of much significance in the synthesis of many other lanthanide compounds with polyhedral morphology.
Resumo:
Uniform NaLuF(4) nanowires and LuBO(3) microdisks have been successfully prepared by a designed chemical conversion method. The lutetium precursor nanowires were first prepared through a simple hydrothermal process. Subsequently, uniform NaLuF(4) nanowires and LuBO(3) microdisks were synthesized at the expense of the precursor by a hydrothermal conversion process. The whole process was carried out in aqueous condition without any organic solvents, surfactant, or catalyst. The conversion processes from precursor to the final products have been investigated in detail. The as-obtained Eu(3+) and Tb(3+)-doped LuBO(3) microdisks and NaLuF(4) nanowires show strong characteristic red and green emissions under ultraviolet excitation or low-voltage electron beam excitation. Moreover, the luminescence colors of the Eu(3+) and Tb(3+) codoped LuBO(3) samples can be tuned from red, orange, yellow, and green-yellow to green by simply adjusting the relative doping concentrations of the activator ions under a single wavelength excitation, which might find potential applications in the fields such as light display systems and optoelectronic devices.
Resumo:
The shape-con trolled synthesis of micrometer- sized gold nanocoralline was simply realized via a wet-chemical approach. The as-prepared hierarchical gold nanocorallines (HGNs) on the solid substrate were initially applied in SERS analysis with 4-aminothiophenol (4-ATP) as the probe molecule. The HGN-modified glass substrate exhibits a higher SERS effect (one order of magnitude higher) than the aggregated gold nanoparticle (similar to 25 nm)-modified glass substrate.
Resumo:
In the reactive extrusion process for polymerization, the chemical calorific effect has a great influence on the temperature. In order to quantitatively analyze the polymerization trend and optimize the processing conditions, the phenomena of the chemical calorific effect during reactive extrusion processes for free radical polymerization were analyzed. Numerical computation expressions of the heat of chemical reaction and the reactive calorific intensity were deduced, and then a numerical simulation of the reactive extrusion process for the polymerization of n-butyl methacrylate was carried out. The evolutions of the heat of chemical reaction and the reactive calorific intensity along the! axial direction of the extruder are presented, on the basis of which reactive processing conditions can be optimized.
Resumo:
To study the content variation of ginsenosides and alkaloids during combination of ginseng with veratrum nigrum, the ginsenosides and alkaloids in the decoction of ginseng with veratrum nigrum were analyzed and compared by high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) and electrospray ionization-mass spectrometry (ESI-MS). In the compatible decoction, eight ginsenosides and eight alkaloids. were detected, and the contents of six ginsenosides were found to be reduced, on the contrary, the contents of six alkaloids were increased. During combination of ginseng with veratrum nigrum, the contents of ginsenosides were reduced and those of the toxic alkaloids were increased. From the chemical point of view, the traditional theory is right that ginseng and veratrum nigrum are incompatible with each other.
Resumo:
Bond distances, vibrational frequencies, electron affinities, ionization potentials, dissociation energies, and dipole moments of the title molecules in neutral, positively, and negatively charged ions were studied using density functional method. Ground electronic state was assigned for each molecule. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that, besides ionic component, covalent bonds are formed between the metal s, d orbitals, and the p orbital of S, Se, and Te. For neutral and cationic molecules, the covalent character increases from ScX to CrX and from FeX to CuX with an exception of decrease at MnX and ZnX, while for anionic molecules, the trend is not obvious. For both neutral and charged molecules, the sulfides have the shortest bond distance and largest vibrational frequency, while tellurides have the largest bond distance and smallest vibrational frequency. For neutral and anionic molecules, the dissociation energy of sulfides is the largest, that of tellurides is the smallest, while this only remains true for cationic molecules from ScX+ to FeX+.
Resumo:
A high performance liquid chroatography-electrospray ionization-mass spectrometric method was developed for analysis and identification of ginsenosides from the decoction of ginseng, ginseng with trogopteroum feces and ginseng with semen raphani. Ten ginsenosides were separated and detected. The content variation of these ginsenosides was researched. The experimental results showed, that ginsenosides were less in compatible decoction than in separate one expect Ro. the stripping of ginsenosides were restrained by semen raphani and during combination of ginseng with trogopteroum feces, the precipitates were produced by ginsenosides.
Resumo:
Bond distances, vibrational frequencies, dipole moments, dissociation energies, electron affinities, and ionization potentials of NIX (XM = Y-Cd, X = F, Cl, Br, I) molecules in neutral, positively, and negatively charged ions were studied by density functional method, B3LYP. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides ionic component, covalent bonds are formed between the 4d transition metal s, d orbitals, and the p orbital of halogen. For both neutral and charged molecules, the fluorides have the shortest bond distance, iodides the longest. Although the opposite situation is observed for vibrational frequency, that is, fluorides have the largest value, iodides the smallest. For neutral and anionic species, the dissociation energy tends to decrease with the increasing atomic number from Y to Cd, suggesting the decreasing or weakening of the bond strength. For cationic species, the trend is observed from Y to Ag.