986 resultados para Chase, Karen
Resumo:
BACKGROUND. To use spectra acquired by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) from pre- and post-digital rectal examination (DRE) urine samples to search for discriminating peaks that can adequately distinguish between benign and malignant prostate conditions, and identify the peaks’ underlying biomolecules. METHODS. Twenty-five participants with prostate cancer (PCa) and 27 participants with a variety of benign prostatic conditions as confirmed by a 10-core tissue biopsy were included. Pre- and post-DRE urine samples were prepared for MALDI MS profiling using an automated clean-up procedure. Following mass spectra collection and processing, peak mass and intensity were extracted and subjected to statistical analysis to identify peaks capable of distinguishing between benign and cancer. Logistic regression was used to combine markers to create a sensitive and specific test. RESULTS. A peak at m/z 10,760 was identified as b-microseminoprotein (b-MSMB) and found to be statistically lower in urine from PCa participants using the peak’s average areas. By combining serum prostate-specific antigen (PSA) levels with MALDI MS-measured b-MSMB levels, optimum threshold values obtained from Receiver Operator characteristics curves gave an increased sensitivity of 96% at a specificity of 26%. CONCLUSIONS. These results demonstrate that with a simple sample clean-up followed by MALDI MS profiling, significant differences of MSMB abundance were found in post-DRE urine samples. In combination with PSA serum levels, obtained from a classic clinical assay led to high classification accuracy for PCa in the studied sample set. Our results need to be validated in a larger multicenter prospective randomized clinical trial.
Resumo:
[1] We present a model of the dust cycle that successfully predicts dust emissions as determined by land surface properties, monthly vegetation and snow cover, and 6-hourly surface wind speeds for the years 1982–1993. The model takes account of the role of dry lake beds as preferential source areas for dust emission. The occurrence of these preferential sources is determined by a water routing and storage model. The dust source scheme also explicitly takes into account the role of vegetation type as well as monthly vegetation cover. Dust transport is computed using assimilated winds for the years 1987–1990. Deposition of dust occurs through dry and wet deposition, where subcloud scavenging is calculated using assimilated precipitation fields. Comparison of simulated patterns of atmospheric dust loading with the Total Ozone Mapping Spectrometer satellite absorbing aerosol index shows that the model produces realistic results from daily to interannual timescales. The magnitude of dust deposition agrees well with sediment flux data from marine sites. Emission of submicron dust from preferential source areas are required for the computation of a realistic dust optical thickness. Sensitivity studies show that Asian dust source strengths are particularly sensitive to the seasonality of vegetation cover.
Resumo:
Atmospheric dust is an important feedback in the climate system, potentially affecting the radiative balance and chemical composition of the atmosphere and providing nutrients to terrestrial and marine ecosystems. Yet the potential impact of dust on the climate system, both in the anthropogenically disturbed future and the naturally varying past, remains to be quantified. The geologic record of dust provides the opportunity to test earth system models designed to simulate dust. Records of dust can be obtained from ice cores, marine sediments, and terrestrial (loess) deposits. Although rarely unequivocal, these records document a variety of processes (source, transport and deposition) in the dust cycle, stored in each archive as changes in clay mineralogy, isotopes, grain size, and concentration of terrigenous materials. Although the extraction of information from each type of archive is slightly different, the basic controls on these dust indicators are the same. Changes in the dust flux and particle size might be controlled by a combination of (a) source area extent, (b) dust emission efficiency (wind speed) and atmospheric transport, (c) atmospheric residence time of dust, and/or (d) relative contributions of dry settling and rainout of dust. Similarly, changes in mineralogy reflect (a) source area mineralogy and weathering and (b) shifts in atmospheric transport. The combination of these geological data with process-based, forward-modelling schemes in global earth system models provides an excellent means of achieving a comprehensive picture of the global pattern of dust accumulation rates, their controlling mechanisms, and how those mechanisms may vary regionally. The Dust Indicators and Records of Terrestrial and MArine Palaeoenvironments (DIRTMAP) data base has been established to provide a global palaeoenvironmental data set that can be used to validate earth system model simulations of the dust cycle over the past 150,000 years.
Resumo:
Natural mineral aerosol (dust) is an active component of the climate system and plays multiple roles in mediating physical and biogeochemical exchanges between the atmosphere, land surface and ocean. Changes in the amount of dust in the atmosphere are caused both by changes in climate (precipitation, wind strength, regional moisture balance) and changes in the extent of dust sources caused by either anthropogenic or climatically induced changes in vegetation cover. Models of the global dust cycle take into account the physical controls on dust deflation from prescribed source areas (based largely on soil wetness and vegetation cover thresholds), dust transport within the atmospheric column, and dust deposition through sedimentation and scavenging by precipitation. These models successfully reproduce the first-order spatial and temporal patterns in atmospheric dust loading under modern conditions. Atmospheric dust loading was as much as an order-of-magnitude larger than today during the last glacial maximum (LGM). While the observed increase in emissions from northern Africa can be explained solely in terms of climate changes (colder, drier and windier glacial climates), increased emissions from other regions appear to have been largely a response to climatically induced changes in vegetation cover and hence in the extent of dust source areas. Model experiments suggest that the increased dust loading in tropical regions had an effect on radiative forcing comparable to that of low glacial CO2 levels. Changes in land-use are already increasing the dust loading of the atmosphere. However, simulations show that anthropogenically forced climate changes substantially reduce the extent and productivity of natural dust sources. Positive feedbacks initiated by a reduction of dust emissions from natural source areas on both radiative forcing and atmospheric CO2 could substantially mitigate the impacts of land-use changes, and need to be considered in climate change assessments.
Resumo:
Mineral dust aerosols in the atmosphere have the potential to affect the global climate by influencing the radiative balance of the atmosphere and the supply of micronutrients to the ocean. Ice and marine sediment cores indicate that dust deposition from the atmosphere was at some locations 2–20 times greater during glacial periods, raising the possibility that mineral aerosols might have contributed to climate change on glacial-interglacial time scales. To address this question, we have used linked terrestrial biosphere, dust source, and atmospheric transport models to simulate the dust cycle in the atmosphere for current and last glacial maximum (LGM) climates. We obtain a 2.5-fold higher dust loading in the entire atmosphere and a twenty-fold higher loading in high latitudes, in LGM relative to present. Comparisons to a compilation of atmospheric dust deposition flux estimates for LGM and present in marine sediment and ice cores show that the simulated flux ratios are broadly in agreement with observations; differences suggest where further improvements in the simple dust model could be made. The simulated increase in high-latitude dustiness depends on the expansion of unvegetated areas, especially in the high latitudes and in central Asia, caused by a combination of increased aridity and low atmospheric [CO2]. The existence of these dust source areas at the LGM is supported by pollen data and loess distribution in the northern continents. These results point to a role for vegetation feedbacks, including climate effects and physiological effects of low [CO2], in modulating the atmospheric distribution of dust.
Resumo:
Induction of the antioxidant enzyme heme oxygenase-1 (HO-1) affords cellular protection and suppresses proliferation of vascular smooth muscle cells (VSMCs) associated with a variety of pathological cardiovascular conditions including myocardial infarction and vascular injury. However, the underlying mechanisms are not fully understood. Over-expression of Cav3.2 T-type Ca2+ channels in HEK293 cells raised basal [Ca2+]i and increased proliferation as compared with non-transfected cells. Proliferation and [Ca2+]i levels were reduced to levels seen in non-transfected cells either by induction of HO-1 or exposure of cells to the HO-1 product, carbon monoxide (CO) (applied as the CO releasing molecule, CORM-3). In the aortic VSMC line A7r5, proliferation was also inhibited by induction of HO-1 or by exposure of cells to CO, and patch-clamp recordings indicated that CO inhibited T-type (as well as L-type) Ca2+ currents in these cells. Finally, in human saphenous vein smooth muscle cells, proliferation was reduced by T-type channel inhibition or by HO-1 induction or CO exposure. The effects of T-type channel blockade and HO-1 induction were non-additive. Collectively, these data indicate that HO-1 regulates proliferation via CO-mediated inhibition of T-type Ca2+ channels. This signalling pathway provides a novel means by which proliferation of VSMCs (and other cells) may be regulated therapeutically.
Resumo:
BACKGROUND: Low plasma 25-hydroxyvitamin D (25[OH]D) concentration is associated with high arterial blood pressure and hypertension risk, but whether this association is causal is unknown. We used a mendelian randomisation approach to test whether 25(OH)D concentration is causally associated with blood pressure and hypertension risk. METHODS: In this mendelian randomisation study, we generated an allele score (25[OH]D synthesis score) based on variants of genes that affect 25(OH)D synthesis or substrate availability (CYP2R1 and DHCR7), which we used as a proxy for 25(OH)D concentration. We meta-analysed data for up to 108 173 individuals from 35 studies in the D-CarDia collaboration to investigate associations between the allele score and blood pressure measurements. We complemented these analyses with previously published summary statistics from the International Consortium on Blood Pressure (ICBP), the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and the Global Blood Pressure Genetics (Global BPGen) consortium. FINDINGS: In phenotypic analyses (up to n=49 363), increased 25(OH)D concentration was associated with decreased systolic blood pressure (β per 10% increase, -0·12 mm Hg, 95% CI -0·20 to -0·04; p=0·003) and reduced odds of hypertension (odds ratio [OR] 0·98, 95% CI 0·97-0·99; p=0·0003), but not with decreased diastolic blood pressure (β per 10% increase, -0·02 mm Hg, -0·08 to 0·03; p=0·37). In meta-analyses in which we combined data from D-CarDia and the ICBP (n=146 581, after exclusion of overlapping studies), each 25(OH)D-increasing allele of the synthesis score was associated with a change of -0·10 mm Hg in systolic blood pressure (-0·21 to -0·0001; p=0·0498) and a change of -0·08 mm Hg in diastolic blood pressure (-0·15 to -0·02; p=0·01). When D-CarDia and consortia data for hypertension were meta-analysed together (n=142 255), the synthesis score was associated with a reduced odds of hypertension (OR per allele, 0·98, 0·96-0·99; p=0·001). In instrumental variable analysis, each 10% increase in genetically instrumented 25(OH)D concentration was associated with a change of -0·29 mm Hg in diastolic blood pressure (-0·52 to -0·07; p=0·01), a change of -0·37 mm Hg in systolic blood pressure (-0·73 to 0·003; p=0·052), and an 8·1% decreased odds of hypertension (OR 0·92, 0·87-0·97; p=0·002). INTERPRETATION: Increased plasma concentrations of 25(OH)D might reduce the risk of hypertension. This finding warrants further investigation in an independent, similarly powered study.
Resumo:
Karen Aplin and Giles Harrison examine international records of the 1859 Carrington flare and consider what they mean for our understanding of space weather today. Space weather is increasingly recognized as a hazard to modern societies, and one way to assess the extent of its possible impact is through analysis of historic space weather events. One such event was the massive solar storm of late August and early September 1859. This is now widely known as the “Carrington flare” or “Carrington event” after the visual solar emissions on 1 September first reported by the Victorian astronomer Richard Carrington from his observatory in Redhill, Surrey (Carrington 1859). The related aurorae and subsequent effects on telegraph networks are well documented (e.g. Clark 2007, Boteler 2006), but use of modern techniques, such as analysis of nitrates produced by solar protons in ice cores to retrospectively assess the nature of the solar flare, has proved problematic (Wolff et al. 2012). This means that there is still very little quantitative information about the flare beyond magnetic observations (e.g. Viljanen et al. 2014).
Resumo:
Wernicke’s aphasia occurs following a stroke to classical language comprehension regions in the left temporoparietal cortex. Consequently, auditory-verbal comprehension is significantly impaired in Wernicke’s aphasia but the capacity to comprehend visually presented materials (written words and pictures) is partially spared. This study used fMRI to investigate the neural basis of written word and picture semantic processing in Wernicke’s aphasia, with the wider aim of examining how the semantic system is altered following damage to the classical comprehension regions. Twelve participants with Wernicke’s aphasia and twelve control participants performed semantic animate-inanimate judgements and a visual height judgement baseline task. Whole brain and ROI analysis in Wernicke’s aphasia and control participants found that semantic judgements were underpinned by activation in the ventral and anterior temporal lobes bilaterally. The Wernicke’s aphasia group displayed an “over-activation” in comparison to control participants, indicating that anterior temporal lobe regions become increasingly influential following reduction in posterior semantic resources. Semantic processing of written words in Wernicke’s aphasia was additionally supported by recruitment of the right anterior superior temporal lobe, a region previously associated with recovery from auditory-verbal comprehension impairments. Overall, the results concord with models which indicate that the anterior temporal lobes are crucial for multimodal semantic processing and that these regions may be accessed without support from classic posterior comprehension regions.
Resumo:
Background: Auditory discrimination is significantly impaired in Wernicke’s aphasia (WA) and thought to be causatively related to the language comprehension impairment which characterises the condition. This study used mismatch negativity (MMN) to investigate the neural responses corresponding to successful and impaired auditory discrimination in WA. Methods: Behavioural auditory discrimination thresholds of CVC syllables and pure tones were measured in WA (n=7) and control (n=7) participants. Threshold results were used to develop multiple-deviant mismatch negativity (MMN) oddball paradigms containing deviants which were either perceptibly or non-perceptibly different from the standard stimuli. MMN analysis investigated differences associated with group, condition and perceptibility as well as the relationship between MMN responses and comprehension (within which behavioural auditory discrimination profiles were examined). Results: MMN waveforms were observable to both perceptible and non-perceptible auditory changes. Perceptibility was only distinguished by MMN amplitude in the PT condition. The WA group could be distinguished from controls by an increase in MMN response latency to CVC stimuli change. Correlation analyses displayed relationship between behavioural CVC discrimination and MMN amplitude in the control group, where greater amplitude corresponded to better discrimination. The WA group displayed the inverse effect; both discrimination accuracy and auditory comprehension scores were reduced with increased MMN amplitude. In the WA group, a further correlation was observed between the lateralisation of MMN response and CVC discrimination accuracy; the greater the bilateral involvement the better the discrimination accuracy. Conclusions: The results from this study provide further evidence for the nature of auditory comprehension impairment in WA and indicate that the auditory discrimination deficit is grounded in a reduced ability to engage in efficient hierarchical processing and the construction of invariant auditory objects. Correlation results suggest that people with chronic WA may rely on an inefficient, noisy right hemisphere auditory stream when attempting to process speech stimuli.
Resumo:
Background We previously reported an association between 5HTTLPR genotype and outcome following cognitive–behavioural therapy (CBT) in child anxiety (Cohort 1). Children homozygous for the low-expression short-allele showed more positive outcomes. Other similar studies have produced mixed results, with most reporting no association between genotype and CBT outcome. Aims To replicate the association between 5HTTLPR and CBT outcome in child anxiety from the Genes for Treatment study (GxT Cohort 2, n = 829). Method Logistic and linear mixed effects models were used to examine the relationship between 5HTTLPR and CBT outcomes. Mega-analyses using both cohorts were performed. Results There was no significant effect of 5HTTLPR on CBT outcomes in Cohort 2. Mega-analyses identified a significant association between 5HTTLPR and remission from all anxiety disorders at follow-up (odds ratio 0.45, P = 0.014), but not primary anxiety disorder outcomes. Conclusions The association between 5HTTLPR genotype and CBT outcome did not replicate. Short-allele homozygotes showed more positive treatment outcomes, but with small, non-significant effects. Future studies would benefit from utilising whole genome approaches and large, homogenous samples.
Resumo:
The courtship behavior of the navel orangeworm, Amyelois transitella, was examined in a wind tunnel. Sixty nine courtship sequences were analyzed and successful sequences divided into two categories: rapid courtship sequences, which involved few breaks in contact, short or no periods of male/female chasing and lasted <10 s between initial contact and mating; and prolonged courtship sequences, which involved many breaks in contact, extended periods of male/female chasing and lasted >10 s. Fifty six (81%) courtships were successful (50.7% rapid courtship and 30.4% prolonged courtship); the remaining 13 (18.8%) sequences were failed courtships. Of failed courtships, 9 (13.0%) were due to males losing contact with females during courtship chases and 4 (5.8%) due to females flying away immediately after male contact. Of all courtship sequences involving a break in contact during a chase, 38.5% resulted in an unsuccessful mating attempt. These findings contrast with previous studies of the courtship behavior of the navel orangeworm, potentially indicating that the type of bioassay used to study courtship may have a large effect on the behavioral sequences displayed. We evaluate several diagnostic techniques for the analysis of sequences of behavioral transitions.
Resumo:
Adult or somatic stem cells are tissue-resident cells with the ability to proliferate, exhibit self-maintenance as well as to generate new cells with the principal phenotypes of the tissue in response to injury or disease. Due to their easy accessibility and their potential use in regenerative medicine, adult stem cells raise the hope for future personalisable therapies. After infection or during injury, they are exposed to broad range of pathogen or damage-associated molecules leading to changes in their proliferation, migration and differentiation. The sensing of such damage and infection signals is mostly achieved by Toll-Like Receptors (TLRs) with Toll-like receptor 4 being responsible for recognition of bacterial lipopolysaccharides (LPS) and endogenous danger-associated molecular patterns (DAMPs). In this review, we examine the current state of knowledge on the TLR4-mediated signalling in different adult stem cell populations. Specifically, we elaborate on the role of TLR4 and its ligands on proliferation, differentiation and migration of mesenchymal stem cells, hematopoietic stem cells as well as neural stem cells. Finally, we discuss conceptual and technical pitfalls in investigation of TLR4 signalling in stem cells.
Resumo:
The aim of this research was to explore consumer perceptions of personalised nutrition and to compare these across three different levels of ‘‘medicalization’’: lifestyle assessment (no blood sampling); phenotypic assessment (blood sampling); genomic assessment (blood and buccal sampling). The protocol was developed from two pilot focus groups conducted in the UK. Two focus groups (one comprising only ‘‘older’’ individuals between 30 and 60 years old, the other of adults 18–65 yrs of age) were run in the UK, Spain, the Netherlands, Poland, Portugal, Ireland, Greece and Germany (N = 16). The analysis (guided using grounded theory) suggested that personalised nutrition was perceived in terms of benefit to health and fitness and that convenience was an important driver of uptake. Negative attitudes were associated with internet delivery but not with personalised nutrition per se. Barriers to uptake were linked to broader technological issues associated with data protection, trust in regulator and service providers. Services that required a fee were expected to be of better quality and more secure. An efficacious, transparent and trustworthy regulatory framework for personalised nutrition is required to alleviate consumer concern. In addition, developing trust in service providers is important if such services to be successful.