994 resultados para Channel identification
Resumo:
Quantum states can be used to encode the information contained in a direction, i.e., in a unit vector. We present the best encoding procedure when the quantum state is made up of N spins (qubits). We find that the quality of this optimal procedure, which we quantify in terms of the fidelity, depends solely on the dimension of the encoding space. We also investigate the use of spatial rotations on a quantum state, which provide a natural and less demanding encoding. In this case we prove that the fidelity is directly related to the largest zeros of the Legendre and Jacobi polynomials. We also discuss our results in terms of the information gain.
Resumo:
This report describes a statewide study conducted to develop main-channel slope (MCS) curves for 138 selected streams in Iowa with drainage areas greater than 100 square miles. MCS values determined from the curves can be used in regression equations for estimating flood frequency discharges. Multi-variable regression equations previously developed for two of the three hydrologic regions defined for Iowa require the measurement of MCS. Main-channel slope is a difficult measurement to obtain for large streams using 1:24,000-scale topographic maps. The curves developed in this report provide a simplified method for determining MCS values for sites located along large streams in Iowa within hydrologic Regions 2 and 3. The curves were developed using MCS values quantified for 2,058 selected sites along 138 selected streams in Iowa. A geographic information system (GIS) technique and 1:24,000-scale topographic data were used to quantify MCS values for the stream sites. The sites were selected at about 5-mile intervals along the streams. River miles were quantified for each stream site using a GIS program. Data points for river-mile and MCS values were plotted and a best-fit curve was developed for each stream. An adjustment was applied to all 138 curves to compensate for differences in MCS values between manual measurements and GIS quantification. The multi-variable equations for Regions 2 and 3 were developed using manual measurements of MCS. A comparison of manual measurements and GIS quantification of MCS indicates that manual measurements typically produce greater values of MCS compared to GIS quantification. Median differences between manual measurements and GIS quantification of MCS are 14.8 and 17.7 percent for Regions 2 and 3, respectively. Comparisons of percentage differences between flood-frequency discharges calculated using MCS values of manual measurements and GIS quantification indicate that use of GIS values of MCS for Region 3 substantially underestimate flood discharges. Mean and median percentage differences for 2- to 500-year recurrence-interval flood discharges ranged from 5.0 to 5.3 and 4.3 to 4.5 percent, respectively, for Region 2 and ranged from 18.3 to 27.1 and 12.3 to 17.3 percent for Region 3. The MCS curves developed from GIS quantification were adjusted by 14.8 percent for streams located in Region 2 and by 17.7 percent for streams located in Region 3. Comparisons of percentage differences between flood discharges calculated using MCS values of manual measurements and adjusted-GIS quantification for Regions 2 and 3 indicate that the flood-discharge estimates are comparable. For Region 2, mean percentage differences for 2- to 500-year recurrence-interval flood discharges ranged between 0.6 and 0.8 percent and median differences were 0.0 percent. For Region 3, mean and median differences ranged between 5.4 to 8.4 and 0.0 to 0.3 percent, respectively. A list of selected stream sites presented with each curve provides information about the sites including river miles, drainage areas, the location of U.S. Geological Survey stream flowgage stations, and the location of streams Abstract crossing hydro logic region boundaries or the Des Moines Lobe landforms region boundary. Two examples are presented for determining river-mile and MCS values, and two techniques are presented for computing flood-frequency discharges.
Resumo:
BACKGROUND: The SCN5A gene encodes for the α-subunit of the cardiac sodium channel NaV1.5, which is responsible for the rapid upstroke of the cardiac action potential. Mutations in this gene may lead to multiple life-threatening disorders of cardiac rhythm or are linked to structural cardiac defects. Here, we characterized a large family with a mutation in SCN5A presenting with an atrioventricular conduction disease and absence of Brugada syndrome. METHOD AND RESULTS: In a large family with a high incidence of sudden cardiac deaths, a heterozygous SCN5A mutation (p.1493delK) with an autosomal dominant inheritance has been identified. Mutation carriers were devoid of any cardiac structural changes. Typical ECG findings were an increased P-wave duration, an AV-block I° and a prolonged QRS duration with an intraventricular conduction delay and no signs for Brugada syndrome. HEK293 cells transfected with 1493delK showed strongly (5-fold) reduced Na(+) currents with altered inactivation kinetics compared to wild-type channels. Immunocytochemical staining demonstrated strongly decreased expression of SCN5A 1493delK in the sarcolemma consistent with an intracellular trafficking defect and thereby a loss-of-function. In addition, SCN5A 1493delK channels that reached cell membrane showed gain-of-function aspects (slowing of the fast inactivation, reduction in the relative fraction of channels that fast inactivate, hastening of the recovery from inactivation). CONCLUSION: In a large family, congregation of a heterozygous SCN5A gene mutation (p.1493delK) predisposes for conduction slowing without evidence for Brugada syndrome due to a predominantly trafficking defect that reduces Na(+) current and depolarization force.
Resumo:
The epithelial Na+ channel ENaC mediates transepithelial Na+ transport in the distal kidney, the colon, and the lung and is a key element for the maintenance of Na+ balance and the regulation of blood pressure. Mutagenesis studies have identified residues alphaS583 and the homologous betaG525 and gammaG537 in the outer pore entrance that are critical for ENaC block by the K+-sparing diuretic amiloride. The aim of the present study was to determine first, whether these residues are part of the amiloride binding site, and second, whether they are general determinants of ENaC block by amiloride and its derivatives. Kinetic analysis of the association and dissociation rates of amiloride and benzamil to ENaC showed that mutation of residue alphaS583C and the homologous betaG525C increased the dissociation rate of the drugs from the binding site, with little changes in their association rate. Thus, these mutations destabilize the binding interaction between the blockers and the receptor on the channel, favoring the unbinding of the ligand. This strongly suggests that they are part of the binding site. Because mutations of alphaS583, betaG525, and gammaG537 have similar effects on amiloride, benzamil, and triamterene block, we conclude that these three ENaC blockers share a common receptor within the ion channel pore.
Resumo:
Caprine and ovine IgA were identified by cross-reaction with anti-human and anti-bovine IgA sera in colostrum, mature milk, saliva, urine and serum. Secretory component (SC) was shown in the free form and associated with polymeric serum IgA in secretions. Mean molecular weights were determined for the IgA and the free secretory components. The high IgA content of saliva suggested that it was a major secretory immunoglobulin in these species. Traces of secretory IgA were also found in normal sera but most of the serum IgA had no secretory determinant. Secretory IgA, serum IgA and free secretory component were purified. Levels of the sheep and goat immunoglobulins were measured in various fluids.
Resumo:
Selostus: Kolmen uuden mesimarjalajikkeen kuvaukset ja lajikekuvausohjeet mesimarjalle ja jalomaaraimelle
Resumo:
The epithelial Na(+) channel ENaC is a key player in the maintenance of whole body Na(+) balance, and consequently of blood pressure. It is tightly regulated by numerous signaling pathways including ubiquitylation via the ubiquitin-protein ligase Nedd4-2. This mechanism is itself under the control of several kinases, which phosphorylate Nedd4-2, thereby interfering with ENaC/Nedd4-2 interaction, or by Usp2-45, which binds to and deubiquitylates ENaC. Another, different regulatory mechanism concerns the proteolytic activation of ENaC, during which the channel is cleaved on its luminal side by intracellular convertases such as furin, and further activated by extracellular proteases such as CAP-1. This process is regulated as well but the underlying mechanisms are not understood. Previously, evidence was provided that the ubiquitylation status of ENaC may affect the cleavage of the channel. When ubiquitylation of ENaC was reduced, either by co-expressing Usp2-45, or mutating either the ENaC PY-motifs (i.e. the binding sites for Nedd4-2) or intracellular lysines (i.e. ubiquitylation sites), the level of channel cleavage was increased. Here we demonstrate that lysine-mutated ENaC channels are not ubiquitylated at the cell surface, are preferentially cleaved, and Usp2-45 does not affect their cleavage efficiency. We further show by limited proteolysis that the intracellular ubiquitylation status of ENaC affects the extracellular conformation of αENaC, by demonstrating that non-ubiquitylated channels are more efficiently cleaved when treated with extracellularly added trypsin or chymotrypsin. These results present a new paradigm in which an intracellular, post-translational modification (e.g. ubiquitylation) of a transmembrane protein can affect its extracellular conformation.
Resumo:
ObjectiveCandidate genes for non-alcoholic fatty liver disease (NAFLD) identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes.Research Design and MethodsBy integrating public database text mining, trans-organism protein-protein interaction transferal, and information on liver protein expression a protein-protein interaction network was constructed and from this a smaller isolated interactome was identified. Five genes from this interactome were selected for genetic analysis. Twenty-one tag single-nucleotide polymorphisms (SNPs) which captured all common variation in these genes were genotyped in 10,196 Danes, and analyzed for association with NAFLD-related quantitative traits, type 2 diabetes (T2D), central obesity, and WHO-defined metabolic syndrome (MetS).Results273 genes were included in the protein-protein interaction analysis and EHHADH, ECHS1, HADHA, HADHB, and ACADL were selected for further examination. A total of 10 nominal statistical significant associations (P<0.05) to quantitative metabolic traits were identified. Also, the case-control study showed associations between variation in the five genes and T2D, central obesity, and MetS, respectively. Bonferroni adjustments for multiple testing negated all associations.ConclusionsUsing a bioinformatics approach we identified five candidate genes for NAFLD. However, we failed to provide evidence of associations with major effects between SNPs in these five genes and NAFLD-related quantitative traits, T2D, central obesity, and MetS.
Resumo:
Over the past few decades, Fourier transform infrared (FTIR) spectroscopy coupled to microscopy has been recognized as an emerging and potentially powerful tool in cancer research and diagnosis. For this purpose, histological analyses performed by pathologists are mostly carried out on biopsied tissue that undergoes the formalin-fixation and paraffin-embedding (FFPE) procedure. This processing method ensures an optimal and permanent preservation of the samples, making FFPE-archived tissue an extremely valuable source for retrospective studies. Nevertheless, as highlighted by previous studies, this fixation procedure significantly changes the principal constituents of cells, resulting in important effects on their infrared (IR) spectrum. Despite the chemical and spectral influence of FFPE processing, some studies demonstrate that FTIR imaging allows precise identification of the different cell types present in biopsied tissue, indicating that the FFPE process preserves spectral differences between distinct cell types. In this study, we investigated whether this is also the case for closely related cell lines. We analyzed spectra from 8 cancerous epithelial cell lines: 4 breast cancer cell lines and 4 melanoma cell lines. For each cell line, we harvested cells at subconfluence and divided them into two sets. We first tested the "original" capability of FTIR imaging to identify these closely related cell lines on cells just dried on BaF2 slides. We then repeated the test after submitting the cells to the FFPE procedure. Our results show that the IR spectra of FFPE processed cancerous cell lines undergo small but significant changes due to the treatment. The spectral modifications were interpreted as a potential decrease in the phospholipid content and protein denaturation, in line with the scientific literature on the topic. Nevertheless, unsupervised analyses showed that spectral proximities and distances between closely related cell lines were mostly, but not entirely, conserved after FFPE processing. Finally, PLS-DA statistical analyses highlighted that closely related cell lines are still successfully identified and efficiently distinguished by FTIR spectroscopy after FFPE treatment. This last result paves the way towards identification and characterization of cellular subtypes on FFPE tissue sections by FTIR imaging, indicating that this analysis technique could become a potential useful tool in cancer research.
Resumo:
The autosomal recessive forms of limb-girdle muscular dystrophies are encoded by at least five distinct genes. The work performed towards the identification of two of these is summarized in this report. This success illustrates the growing importance of genetics in modern nosology.
Resumo:
Liddle syndrome is an autosomal dominant form of hypertension resulting from deletion or missense mutations of a PPPxY motif in the cytoplasmic COOH terminus of either the beta or gamma subunit of the epithelial Na channel (ENaC). These mutations lead to increased channel activity. In this study we show that wild-type ENaC is downregulated by intracellular Na+, and that Liddle mutants decrease the channel sensitivity to inhibition by intracellular Na+. This event results at high intracellular Na+ activity in 1.2-2.4-fold higher cell surface expression, and 2.8-3.5-fold higher average current per channel in Liddle mutants compared with the wild type. In addition, we show that a rapid increase in the intracellular Na+ activity induced downregulation of the activity of wild-type ENaC, but not Liddle mutants, on a time scale of minutes, which was directly correlated to the magnitude of the Na+ influx into the oocytes. Feedback inhibition of ENaC by intracellular Na+ likely represents an important cellular mechanism for controlling Na+ reabsorption in the distal nephron that has important implications for the pathogenesis of hypertension.
Resumo:
The use of synthetic combinatorial peptide libraries in positional scanning format (PS-SCL) has emerged recently as an alternative approach for the identification of peptides recognized by T lymphocytes. The choice of both the PS-SCL used for screening experiments and the method used for data analysis are crucial for implementing this approach. With this aim, we tested the recognition of different PS-SCL by a tyrosinase 368-376-specific CTL clone and analyzed the data obtained with a recently developed biometric data analysis based on a model of independent and additive contribution of individual amino acids to peptide antigen recognition. Mixtures defined with amino acids present at the corresponding positions in the native sequence were among the most active for all of the libraries. Somewhat surprisingly, a higher number of native amino acids were identifiable by using amidated COOH-terminal rather than free COOH-terminal PS-SCL. Also, our data clearly indicate that when using PS-SCL longer than optimal, frame shifts occur frequently and should be taken into account. Biometric analysis of the data obtained with the amidated COOH-terminal nonapeptide library allowed the identification of the native ligand as the sequence with the highest score in a public human protein database. However, the adequacy of the PS-SCL data for the identification for the peptide ligand varied depending on the PS-SCL used. Altogether these results provide insight into the potential of PS-SCL for the identification of CTL-defined tumor-derived antigenic sequences and may significantly implement our ability to interpret the results of these analyses.
Resumo:
The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property.
Resumo:
PURPOSE: To objectively characterize different heart tissues from functional and viability images provided by composite-strain-encoding (C-SENC) MRI. MATERIALS AND METHODS: C-SENC is a new MRI technique for simultaneously acquiring cardiac functional and viability images. In this work, an unsupervised multi-stage fuzzy clustering method is proposed to identify different heart tissues in the C-SENC images. The method is based on sequential application of the fuzzy c-means (FCM) and iterative self-organizing data (ISODATA) clustering algorithms. The proposed method is tested on simulated heart images and on images from nine patients with and without myocardial infarction (MI). The resulting clustered images are compared with MRI delayed-enhancement (DE) viability images for determining MI. Also, Bland-Altman analysis is conducted between the two methods. RESULTS: Normal myocardium, infarcted myocardium, and blood are correctly identified using the proposed method. The clustered images correctly identified 90 +/- 4% of the pixels defined as infarct in the DE images. In addition, 89 +/- 5% of the pixels defined as infarct in the clustered images were also defined as infarct in DE images. The Bland-Altman results show no bias between the two methods in identifying MI. CONCLUSION: The proposed technique allows for objectively identifying divergent heart tissues, which would be potentially important for clinical decision-making in patients with MI.
Resumo:
ABSTRACT Trichoderma species are non-pathogenic microorganisms that protect against fungal diseases and contribute to increased crop yields. However, not all Trichoderma species have the same effects on crop or a pathogen, whereby the characterization and identification of strains at the species level is the first step in the use of a microorganism. The aim of this study was the identification – at species level – of five strains of Trichoderma isolated from soil samples obtained from garlic and onion fields located in Costa Rica, through the analysis of the ITS1, 5.8S, and ITS2 ribosomal RNA regions; as well as the determination of their individual antagonistic ability over S. cepivorum Berkeley. In order to distinguish the strains, the amplified products were analyzed using MEGA v6.0 software, calculating the genetic distances through the Tamura-Nei model and building the phylogenetic tree using the Maximum Likelihood method. We established that the evaluated strains belonged to the species T. harzianum and T. asperellum; however it was not possible to identify one of the analyzed strains based on the species criterion. To evaluate their antagonistic ability, the dual culture technique, Bell’s scale, and the percentage inhibition of radial growth (PIRG) were used, evidencing that one of the T. asperellum isolates presented the best yields under standard, solid fermentation conditions.