978 resultados para Cellular-distribution
Resumo:
The status of the endemic and endangered lion-tailed macaque (Macaca silenus) has not been properly assessed in several regions of the Western Ghats of southern India. We conducted a study in Parambikulam Forest Reserve in the state of Kerala to determine the distribution, demography, and status of lion-tailed macaques. We laid 5km(2) grid cells on the map of the study area (644km(2)) and made four replicated walks in each grid cell using GPS. We gathered data on lion-tailed macaque group locations, demography, and site covariates including trail length, duration of walk, proportion of evergreen forest, height of tallest trees, and human disturbance index. We also performed occupancy modeling using PRESENCE ver. 3.0. We estimated a minimum of 17 groups of macaques in these hills. Low detection and occupancy probabilities indicated a low density of lion-tailed macaques in the study area. Height of the tallest trees correlated positively whereas human disturbance and proportion of evergreen forest correlated negatively with occupancy in grid cells. We also used data from earlier studies carried out in the surrounding Anamalai Tiger Reserve and Nelliyampathy Hills to discuss the conservation status in the large Anamalai Hills Landscape. This landscape harbors an estimated population of 1108 individuals of lion-tailed macaques, which is about one third of the entire estimated wild population of this species. A conservation plan for this landscape could be used as a model for conservation in other regions of the Western Ghats.
Resumo:
Cellular structures of carbon nanotubes (CNT) are novel engineering materials, which are finding applications due to their remarkable structural and functional properties. Here, we report the effects of electric field, one of the most frequently used stimulants for harnessing the functional properties of CNT, on the viscoelastic response, an important design consideration for the structural applications of a cellular CNT sample. The application of an electric field results in electrostriction induced large actuation in freestanding CNT samples; however, if the CNT are prohibited to expand, an electric field dependent force is exerted by the sample on the constraining platens. In addition, the above force monotonically decreases with the pre-compressive strain imposed onto the sample. The viscoelastic recovery reveals a decrease in the stress relaxation with an increase in the pre-compressive strain in both the presence and absence of the electric field; however, the stress relaxation was significantly higher in the presence of the electric field. A model, based on a simple linear viscoelastic solid incorporating electric field, is developed to understand the experimental observations.
Resumo:
An experimental charge density analysis of an anti-TB drug ethionamide was carried out from high resolution X-ray diffraction at 100 K to understand its charge density distribution and electrostatic properties. The experimental results were validated from periodic theoretical charge density calculations performed using CRYSTAL09 at the B3LYP/6-31G** level of theory. The electron density rho(bcp)(r) and the Laplacian of electron density del(2)(rho bcp)(r) of the molecule calculated from both the methods display the charge density distribution of the ethionamide molecule in the crystal field. The electrostatic potential map shows a large electropositive region around the pyridine ring and a large electronegative region at the vicinity of the thiol atom. The calculated experimental dipole moment is 10.6D, which is higher than the value calculated from theory (8.2D). The topological properties of C-H center dot center dot center dot S, N-H center dot center dot center dot N and N-H center dot center dot center dot S hydrogen bonds were calculated, revealing their strength. The charge density analysis of the ethionamide molecule determined from both the experiment and theory gives the topological and electrostatic properties of the molecule, which allows to precisely understand the nature of intra and intermolecular interactions.
Resumo:
Contact damage in curved interface nano-layeredmetal/nitride (150 (ZrN)/10 (Zr) nm) multilayer is investigated in order to understand the role of interface morphology on contact damage under indentation. A finite element method (FEM) model was formulated with different wavelengths of 1000 nm, 500 nm, 250 nm and common height of 50 nm, which gives insight on the effect of different curvature on stress field generated under indentation. Elastic-plastic properties were assigned to the metal layer and substrate while the nitride layer was assigned perfectly elastic properties. Curved interface multilayers show delamination along the metal/nitride interface and vertical cracks emanating from the ends of the delamination. FEM revealed the presence of tensile stress normal to the interface even under the contact, along with tensile radial stresses, both present at the valley part of the curve, which leads to vertical cracks associated with interfacial delamination. Stress enhancement was seen to be relatively insensitive to curvature. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
GaN nanorods were grown by plasma assisted molecular beam epitaxy on intrinsic Si (111) substrates which were characterized by powder X-ray diffraction, field emission scanning electron microscopy, and photoluminescence. The current-voltage characteristics of the GaN nanorods on Si (111) heterojunction were obtained from 138 to 493K which showed the inverted rectification behavior. The I-V characteristics were analyzed in terms of thermionic emission model. The temperature variation of the apparent barrier height and ideality factor along with the non-linearity of the activation energy plot indicated the presence of lateral inhomogeneities in the barrier height. The observed two temperature regimes in Richardson's plot could be well explained by assuming two separate Gaussian distribution of the barrier heights. (C) 2014 AIP Publishing LLC.
Resumo:
We report a direct correlation between dissimilar ion pair formation and alkali ion transport in soda-lime silicate glasses established via broad band conductivity spectroscopy and local structural probe techniques. The combined Raman and Nuclear Magnetic Resonance (NMR) spectroscopy techniques on these glasses reveal the coexistence of different anionic species and the prevalence of Na+-Ca2+ dissimilar pairs as well as their distributions. The spectroscopic results further confirm the formation of dissimilar pairs atomistically, where it increases with increasing alkaline-earth oxide content These results, are the manifestation of local structural changes in the silicate network with composition which give rise to different environments into which the alkali ions hop. The Na+ ion mobility varies inversely with dissimilar pair formation, i.e. it decreases with increase of non-random formation of dissimilar pairs. Remarkably, we found that increased degree of non-randomness leads to temperature dependent variation in number density of sodium ions. Furthermore, the present study provides the strong link between the dynamics of the alkali ions and different sites associated with it in soda-lime silicate glasses. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Cells exposed to genotoxic stress induce cellular senescence through a DNA damage response (DDR) pathway regulated by ATM kinase and reactive oxygen species (ROS). Here, we show that the regulatory roles for ATM kinase and ROS differ during induction and maintenance of cellular senescence. Cells treated with different genotoxic agents were analyzed using specific pathway markers and inhibitors to determine that ATM kinase activation is directly proportional to the dose of the genotoxic stress and that senescence initiation is not dependent on ROS or the p53 status of cells. Cells in which ROS was quenched still activated ATM and initiated the DDR when insulted, and progressed normally to senescence. By contrast, maintenance of a viable senescent state required the presence of ROS as well as activated ATM. Inhibition or removal of either of the components caused cell death in senescent cells, through a deregulated ATM-ROS axis. Overall, our work demonstrates existence of an intricate temporal hierarchy between genotoxic stress, DDR and ROS in cellular senescence. Our model reports the existence of different stages of cellular senescence with distinct regulatory networks.
Resumo:
Multi temporal land use information were derived using two decades remote sensing data and simulated for 2012 and 2020 with Cellular Automata (CA) considering scenarios, change probabilities (through Markov chain) and Multi Criteria Evaluation (MCE). Agents and constraints were considered for modeling the urbanization process. Agents were nornmlized through fiizzyfication and priority weights were assigned through Analytical Hierarchical Process (AHP) pairwise comparison for each factor (in MCE) to derive behavior-oriented rules of transition for each land use class. Simulation shows a good agreement with the classified data. Fuzzy and AHP helped in analyzing the effects of agents of growth clearly and CA-Markov proved as a powerful tool in modelling and helped in capturing and visualizing the spatiotemporal patterns of urbanization. This provided rapid land evaluation framework with the essential insights of the urban trajectory for effective sustainable city planning.
Resumo:
Small heat shock proteins (sHSPs) are a family of ATP-independent molecular chaperones which prevent cellular protein aggregation by binding to misfolded proteins. sHSPs form large oligomers that undergo drastic rearrangement/dissociation in order to execute their chaperone activity in protecting substrates from stress. Substrate-binding sites on sHSPs have been predominantly mapped on their intrinsically disordered N-terminal arms. This region is highly variable in sequence and length across species, and has been implicated in both oligomer formation and in mediating chaperone activity. Here, we present our results on the functional and structural characterization of five sHSPs in rice, each differing in their subcellular localisation, viz., cytoplasm, nucleus, chloroplast, mitochondria and peroxisome. We performed activity assays and dynamic light scattering studies to highlight differences in the chaperone activity and quaternary assembly of sHSPs targeted to various organelles. By cloning constructs that differ in the length and sequence of the tag in the N-terminal region, we have probed the sensitivity of sHSP oligomer assembly and chaperone activity to the length and amino acid composition of the N-terminus. In particular, we have shown that the incorporation of an N-terminal tag has significant consequences on sHSP quaternary structure.
Resumo:
Based on an ultrasound-modulated optical tomography experiment, a direct, quantitative recovery of Young's modulus (E) is achieved from the modulation depth (M) in the intensity autocorrelation. The number of detector locations is limited to two in orthogonal directions, reducing the complexity of the data gathering step whilst ensuring against an impoverishment of the measurement, by employing ultrasound frequency as a parameter to vary during data collection. The M and E are related via two partial differential equations. The first one connects M to the amplitude of vibration of the scattering centers in the focal volume and the other, this amplitude to E. A (composite) sensitivity matrix is arrived at mapping the variation of M with that of E and used in a (barely regularized) Gauss-Newton algorithm to iteratively recover E. The reconstruction results showing the variation of E are presented. (C) 2015 Optical Society of America
Resumo:
Iron(III) complexes of pyridoxal (vitamin B6, VB6) or salicylaldehyde Schiff bases and modified dipicolylamines, namely, Fe(B)(L)](NO3) (15), where B is phenyl-N,N-bis((pyridin-2-yl)methyl)methanamine (phbpa in 1), (anthracen-9-yl)-N,N-bis((pyridin-2-yl)methyl)methanamine (anbpa in 2, 4) and (pyren-1-yl)-N,N-bis((pyridin-2-yl)methyl)methanamine (pybpa in 3, 5) (H2L1 is 3-hydroxy-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylp yridine (13) and H2L2 is 2-(2-hydroxyphenyl-imino)methyl]phenol), were prepared and their uptake in cancer cells and photocytotoxicity were studied. Complexes 4 and 5, having a non-pyridoxal Schiff base, were prepared to probe the role of the pyridoxal group in tumor targeting and cellular uptake. The PF6 salt (1a) of complex 1 is structurally characterized. The complexes have a distorted six-coordinate FeN4O2 core where the metal is in the +3 oxidation state with five unpaired electrons. The complexes display a ligand to metal charge transfer band near 520 and 420 nm from phenolate to the iron(III) center. The photophysical properties of the complexes are explained from the time dependent density functional theory calculations. The redox active complexes show a quasi-reversible Fe(III)/Fe(II) response near -0.3 V vs saturated calomel electrode. Complexes 2 and 3 exhibit remarkable photocytotoxicity in various cancer cells with IC50 values ranging from 0.4 to 5 mu M with 10-fold lower dark toxicity. The cell death proceeded by the apoptotic pathway due to generation of reactive oxygen species upon light exposure. The nonvitamin complexes 4 and 5 display 3-fold lower photocytotoxicity compared to their VB6 analogues, possibly due to preferential and faster uptake of the vitamin complexes in the cancer cells. Complexes 2 and 3 show significant uptake in the endoplasmic reticulum, while complexes 4 and 5 are distributed throughout the cells without any specific localization pattern.
Resumo:
The steady-state negative supercoiling of eubacterial genomes is maintained by the action of DNA topoisomerases. Topoisomerase distribution varies in different species of mycobacteria. While Mycobacterium tuberculosis (Mtb) contains a single type I (Topol) and a single type II (Gyrase) enzyme, Mycobacterium smegmatis (Msm) and other members harbour additional relaxases. Topol is essential for Mtb survival. However, the necessity of Topol or other relaxases in Msm has not been investigated. To recognize the importance of Topol for growth, physiology and gene expression of Msm, we have developed a conditional knock-down strain of Topol in Msm. The Topol-depleted strain exhibited extremely slow growth and drastic changes in phenotypic characteristics. The cessation of growth indicates the essential requirement of the enzyme for the organism in spite of having additional DNA relaxation enzymes in the cell. Notably, the imbalance in Topol level led to the altered expression of topology modulatory proteins, resulting in a diffused nucleoid architecture. Proteomic and transcript analysis of the mutant indicated reduced expression of the genes involved in central metabolic pathways and core DNA transaction processes. RNA polymerase (RNAP) distribution on the transcription units was affected in the Topol-depleted cells, suggesting global alteration in transcription. The study thus highlights the essential requirement of Topol in the maintenance of cellular phenotype, growth characteristics and gene expression in mycobacteria. A decrease in Topol level led to altered RNAP occupancy and impaired transcription elongation, causing severe downstream effects.
Resumo:
Silver nanoparticles (AgNPs) find use in different biomedical applications including wound healing and cancer. We propose that the efficacy of the nanoparticles can be further augmented by using these particles for gene delivery applications. The objective of this work was to engineer biofunctionalized stable AgNPs with good DNA binding ability for efficient transfection and minimal toxicity. Herein, we report on the one-pot facile green synthesis of polyethylene glycol (PEG) stabilized chitosan-g-polyacrylamide modified AgNPs. The size of the PEG stabilized AgNPs was 38 +/- 4 nm with a tighter size distribution compared to the unstabilized nanoparticles which showed bimodal distribution of particle sizes of 68 +/- 5 nm and 7 +/- 4 nm. To enhance the efficiency of gene transfection, the Arg-Gly-Asp-Ser (RGDS) peptide was immobilized on the silver nanoparticles. The transfection efficiency of AgNPs increased significantly after immobilization of the RGDS peptide reaching up to 42 +/- 4% and 30 +/- 3% in HeLa and A549 cells, respectively, and significantly higher than 34 +/- 3% and 23 +/- 2%, respectively, with the use of polyethyleneimine (25 kDa). These nanoparticles were found to induce minimal cellular toxicity. Differences in cellular uptake mechanisms with RGDS immobilization resulting in improved efficiency are elucidated. This study presents biofunctionalized AgNPs for potential use as efficient nonviral carriers for gene delivery with minimal cytotoxicity toward augmenting the therapeutic efficacy of AgNPs used in different biomedical products.
Resumo:
Karnataka state in southern India supports a globally significant and the country's largest population of the Asian elephant Elephas maximus. A reliable map of Asian elephant distribution and measures of spatial variation in their abundance, both vital needs for conservation and management action, are unavailable not only in Karnataka, but across its global range. Here, we use various data gathered between 2000 and 2015 to map the distribution of elephants in Karnataka at the scale of the smallest forest management unit, the `beat', while also presenting data on elephant dung density for a subset of `elephant beats.' Elephants occurred in 972 out of 2855 forest beats of Karnataka. Sixty percent of these 972 beats and 55% of the forest habitat lay outside notified protected areas (PM), and included lands designated for agricultural production and human dwelling. While median elephant dung density inside protected areas was nearly thrice as much as outside, elephants routinely occurred in or used habitats outside PM where human density, land fraction under cultivation, and the interface between human-dominated areas and forests were greater. Based on our data, it is clear that India's framework for elephant conservation which legally protects the species wherever it occurs, but protects only some of its habitats while being appropriate in furthering their conservation within PM, seriously falters in situations where elephants reside in and/or seasonally use areas outside PAs. Attempts to further elephant conservation in production and dwelling areas have extracted high costs in human, elephant, material and monetary terms in Karnataka. In such settings, conservation planning exercises are necessary to determine where the needs of elephants or humans must take priority over the other, and to achieve that in a manner that is based not only on reliable scientific data but also on a process of public reasoning. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Using remotely sensed Tropical Rainfall Measuring Mission (TRMM) 3B42 rainfall and topographic data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Digital Elevation Model (DEM), the impact of oroghraphical aspects such as topography, spatial variability of elevation and altitude of apexes are examined to investigate capacious summer monsoon rainfall over the Western Ghats (WG) of India. TRMM 3B42 v7 rainfall data is validated with Indian Meteorological Department (IMD) gridded rainfall data at 0.5 degrees resolution over the WG. The analysis of spatial pattern of monsoon rainfall with orography of the WG ascertains that the grade of orographic precipitation depends mainly on topography of the mountain barrier followed by steepness of windward side slope and altitude of the mountain. Longer and broader, i.e. cascaded topography, elevated summits and gradually increasing slopes impel the enhancement in precipitation. Comparing topography of various states of the WG, it has been observed that windward side of Karnataka receives intense rainfall in the WG during summer monsoon. It has been observed that the rainfall is enhanced before the peak of the mountain and confined up to the height about 800m over the WG. In addition to this, the spatial distribution of heavy and very heavy rainfall events in the last 14 years has also been explored. Heavy and very heavy rain events on this hilly terrain are categorized with a threshold of precipitation (R) in the range 150>R>120mmday(-1) and exceeding 150mmday(-1) using probability distribution of TRMM 3B42 v7 rainfall. The areas which are prone to heavy precipitation are identified. The study would help policy makers to manage the hazard scenario and, to improve weather predictions on mountainous terrain of the WG.