943 resultados para Celdas de reactor


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A lattice Boltzmann method is used to model gas-solid reactions where the composition of both the gas and solid phase changes with time, while the boundary between phases remains fixed. The flow of the bulk gas phase is treated using a multiple relaxation time MRT D3Q19 model; the dilute reactant is treated as a passive scalar using a single relaxation time BGK D3Q7 model with distinct inter- and intraparticle diffusivities. A first-order reaction is incorporated by modifying the method of Sullivan et al. [13] to include the conversion of a solid reactant. The detailed computational model is able to capture the multiscale physics encountered in reactor systems. Specifically, the model reproduced steady state analytical solutions for the reaction of a porous catalyst sphere (pore scale) and empirical solutions for mass transfer to the surface of a sphere at Re=10 (particle scale). Excellent quantitative agreement between the model and experiments for the transient reduction of a single, porous sphere of Fe 2O 3 to Fe 3O 4 in CO at 1023K and 10 5Pa is demonstrated. Model solutions for the reduction of a packed bed of Fe 2O 3 (reactor scale) at identical conditions approached those of experiments after 25 s, but required prohibitively long processor times. The presented lattice Boltzmann model resolved successfully mass transport at the pore, particle and reactor scales and highlights the relevance of LB methods for modelling convection, diffusion and reaction physics. © 2012 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Achieving higher particles energies and beam powers have long been the main focus of research in accelerator technology. Since Accelerator Driven Subcritical Reactors (ADSRs) have become the subject of increasing interest, accelerator reliability and modes of operation have become important matters that require further research and development in order to accommodate the engineering and economic needs of ADSRs. This paper focuses on neutronic and thermo-mechanical analyses of accelerator-induced transients in an ADSR. Such transients fall into three main categories: beam interruptions (trips), pulsed-beam operation, and beam overpower. The concept of a multiple-target ADSR is shown to increase system reliability and to mitigate the negative effects of beam interruptions, such as thermal cyclic fatigue in the fuel cladding and the huge financial cost of total power loss. This work also demonstrates the effectiveness of the temperature-to-reactivity feedback mechanisms in ADSRs. A comparison of shutdown mechanisms using control rods and beam cut-off highlights the intrinsic safety features of ADSRs. It is evident that the presence of control rods is crucial in an industrial-scale ADSR. This paper also proposes a method to monitor core reactivity online using the repetitive pattern of beam current fluctuations in a pulsed-beam operation mode. Results were produced using PTS-ADS, a computer code developed specifically to study the dynamic neutronic and thermal responses to beam transients in subcritical reactor systems. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computational fluid dynamics (CFD) simulations are becoming increasingly widespread with the advent of more powerful computers and more sophisticated software. The aim of these developments is to facilitate more accurate reactor design and optimization methods compared to traditional lumped-parameter models. However, in order for CFD to be a trusted method, it must be validated using experimental data acquired at sufficiently high spatial resolution. This article validates an in-house CFD code by comparison with flow-field data obtained using magnetic resonance imaging (MRI) for a packed bed with a particle-to-column diameter ratio of 2. Flows characterized by inlet Reynolds numbers, based on particle diameter, of 27, 55, 111, and 216 are considered. The code used employs preconditioning to directly solve for pressure in low-velocity flow regimes. Excellent agreement was found between the MRI and CFD data with relative error between the experimentally determined and numerically predicted flow-fields being in the range of 3-9%. © 2012 American Institute of Chemical Engineers (AIChE).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the effects of design parameters, such as cladding and coolant material choices, and operational phenomena, such as creep and fission product decay heat, on the tolerance of Accelerator Driven Subcritical Reactor (ADSR) fuel pin cladding to beam interruptions. This work aims to provide a greater understanding of the integration between accelerator and nuclear reactor technologies in ADSRs. The results show that an upper limit on cladding operating temperature of 550 °C is appropriate, as higher values of temperature tend to accelerate creep, leading to cladding failure much sooner than anticipated. The effect of fission product decay heat is to reduce significantly the maximum stress developed in the cladding during a beam-trip-induced transient. The potential impact of irradiation damage and the effects of the liquid metal coolant environment on the cladding are discussed. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method for VVER-1000 fuel rearrangement optimization that takes into account both cladding durability and fuel burnup and which is suitable for any regime of normal reactor operation has been established. The main stages involved in solving the problem of fuel rearrangement optimization are discussed in detail. Using the proposed fuel rearrangement efficiency criterion, a simple example VVER-1000 fuel rearrangement optimization problem is solved under deterministic and uncertain conditions. It is shown that the deterministic and robust (in the face of uncertainty) solutions of the rearrangement optimization problem are similar in principle, but the robust solution is, as might be anticipated, more conservative. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Accelerator Driven Subcritical Reactor (ADSR) concept is based on the coupling of a particle accelerator to a subcritical reactor core by means of a neutron spallation target interface. This paper investigates the benefits of multiple spallation targets in ADSRs. The motivation behind this is, firstly, to improve the overall reliability of the accelerator-reactor system, and, secondly, to evaluate other potential advantages such as lower beam power requirements. The results show that a system containing two or three spallation targets, coupled to independent accelerators, offers better neutronic performance. This is demonstrated through the increased effective multiplication factor (keff) in the two- and three-target configurations and a more uniform neutron flux distribution. A multiple-target ADSR also proves effective in mitigating the impact of frequent beam interruptions, a pressing issue that needs to be addressed for the ADSR concept to advance. Assuming no simultaneous beam shutdowns, the two- and three-target configurations reduce the risk of fuel cladding failure due to thermal cyclic fatigue. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct Numerical Simulations (DNS) of turbulent n-heptane sprays autoigniting at high pressure (P=24bar) and intermediate air temperature (Tair=1000K) have been performed to investigate the physical mechanisms present under conditions where low-temperature chemistry is expected to be important. The initial turbulence in the carrier gas, the global equivalence ratio in the spray region, and the initial droplet size distribution of the spray were varied. Results show that spray ignition exhibits a spotty nature, with several kernels developing independently in those regions where the mixture fraction is close to its most reactive value ξMR (as determined from homogeneous reactor calculations) and the scalar dissipation rate is low. Turbulence reduces the ignition delay time as it promotes mixing between air and the fuel vapor, eventually resulting in lower values of scalar dissipation. High values of the global equivalence ratio are responsible for a larger number of ignition kernels, due to the higher probability of finding regions where ξ=ξMR. Spray polydispersity results in the occurrence of ignition over a wider range of mixture fraction values. This is a consequence of the inhomogeneities in the mixing field that characterize these sprays, where poorly mixed rich spots are seen to alternate with leaner ones which are well-mixed. The DNS simulations presented in this work have also been used to assess the applicability of the Conditional Moment Closure (CMC) method to the simulation of spray combustion. CMC is found to be a valid method for capturing spray autoignition, although care should be taken in the modelling of the unclosed terms appearing in the CMC equations. © 2013 The Combustion Institute.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An established Stochastic Reactor Model (SRM) is used to simulate the transition from Spark Ignition (SI) to Homogeneous Charge Compression Ignition (HCCI) combustion mode in a four cylinder in-line four-stroke naturally aspirated direct injection SI engine with cam profile switching. The SRM is coupled with GT-Power, a one-dimensional engine simulation tool used for modelling engine breathing during the open valve portion of the engine cycle, enabling multi-cycle simulations. The mode change is achieved by switching the cam profiles and phasing, resulting in a Negative Valve Overlap (NVO), opening the throttle, advancing the spark timing and reducing the fuel mass as well as using a pilot injection. A proven technique for tabulating the model is used to create look-up tables in both SI and HCCI modes. In HCCI mode several tables are required, including tables for the first NVO, transient valve timing NVO, transient valve timing HCCI and steady valve timing HCCI and NVO. This results in the ability to simulate the transition with detailed chemistry in very short computation times. The tables are then used to optimise the transition with the goal of reducing NO x emissions and fluctuations in IMEP. Copyright © 2010 SAE International.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Stochastic Reactor Model (SRM) has been used to simulate the transition from Spark Ignition (SI) mode to Homogeneous Charge Compression Ignition (HCCI) mode in a four cylinder in-line four-stroke naturally aspirated direct injection SI engine with cam profile switching. The SRM is coupled with GT-Power, a one-dimensional engine simulation tool used for modelling engine breathing during the open valve portion of the engine cycle, enabling multi-cycle simulations. The model is initially calibrated in both modes using steady state data from SI and HCCI operation. The mode change is achieved by switching the cam profiles and phasing, resulting in a Negative Valve Overlap (NVO), opening the throttle, advancing the spark timing and reducing the fuel mass as well as utilising a pilot injection. Experimental data is presented along with the simulation results. The model is used to investigate key control parameters and their effects on parameters that are difficult to measure experimentally. The effect of the spark in the first HCCI cycles is found to have a major impact on the stability of the transition. Copyright © 2010 SAE International.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DYN3D reactor dynamics nodal diffusion code was originally developed for the analysis of Light Water Reactors. In this paper, we demonstrate the feasibility of using DYN3D for modeling of fast spectrum reactors. A homogenized cross sections data library was generated using continuous energy Monte-Carlo code Serpent which provides significant modeling flexibility compared with traditional deterministic lattice transport codes and tolerable execution time. A representative sodium cooled fast reactor core was modeled with the Serpent-DYN3D code sequence and the results were compared with those produced by ERANOS code and with a 3D full core Monte-Carlo solution. Very good agreement between the codes was observed for the core integral parameters and power distribution suggesting that the DYN3D code with cross section library generated using Serpent can be reliably used for the analysis of fast reactors. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on fuel design optimization of a PWR operating in a self sustainable Th-233U fuel cycle. Monte Carlo simulated annealing method was used in order to identify the fuel assembly configuration with the most attractive breeding performance. In previous studies, it was shown that breeding may be achieved by employing heterogeneous Seed-Blanket fuel geometry. The arrangement of seed and blanket pins within the assemblies may be determined by varying the designed parameters based on basic reactor physics phenomena which affect breeding. However, the amount of free parameters may still prove to be prohibitively large in order to systematically explore the design space for optimal solution. Therefore, the Monte Carlo annealing algorithm for neutronic optimization is applied in order to identify the most favorable design. The objective of simulated annealing optimization is to find a set of design parameters, which maximizes some given performance function (such as relative period of net breeding) under specified constraints (such as fuel cycle length). The first objective of the study was to demonstrate that the simulated annealing optimization algorithm will lead to the same fuel pins arrangement as was obtained in the previous studies which used only basic physics phenomena as guidance for optimization. In the second part of this work, the simulated annealing method was used to optimize fuel pins arrangement in much larger fuel assembly, where the basic physics intuition does not yield clearly optimal configuration. The simulated annealing method was found to be very efficient in selecting the optimal design in both cases. In the future, this method will be used for optimization of fuel assembly design with larger number of free parameters in order to determine the most favorable trade-off between the breeding performance and core average power density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on an investigation into fuel design choices of a pressurized water reactor operating in a self-sustainable Th- 233U fuel cycle. In order to evaluate feasibility of this concept, two types of fuel assembly lattices were considered: square and hexagonal. The hexagonal lattice may offer some advantages over the square one. For example, the fertile blanket fuel can be packed more tightly reducing the blanket volume fraction in the core and potentially allowing to achieve higher core average power density. The calculations were carried out with Monte-Carlo based BGCore code system and the results were compared to those obtained with Serpent Monte-Carlo code and deterministic transport code BOXER. One of the major design challenges associated with the SB concept is high power peaking due to the high concentration of fissile material in the seed region. The second objective of this work is to estimate the maximum achievable core power density by evaluation of limiting thermal hydraulic parameters. The analysis showed that both fuel assembly designs have a potential of achieving net breeding. Although hexagonal lattice was found to be somewhat more favorable because it allows achieving higher power density, while having breeding performance comparable to the square lattice case. © Carl Hanser Verlag München.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BGCore reactor analysis system was recently developed at Ben-Gurion University for calculating in-core fuel composition and spent fuel emissions following discharge. It couples the Monte Carlo transport code MCNP with an independently developed burnup and decay module SARAF. Most of the existing MCNP based depletion codes (e.g. MOCUP, Monteburns, MCODE) tally directly the one-group fluxes and reaction rates in order to prepare one-group cross sections necessary for the fuel depletion analysis. BGCore, on the other hand, uses a multi-group (MG) approach for generation of one group cross-sections. This coupling approach significantly reduces the code execution time without compromising the accuracy of the results. Substantial reduction in the BGCore code execution time allows consideration of problems with much higher degree of complexity, such as introduction of thermal hydraulic (TH) feedback into the calculation scheme. Recently, a simplified TH feedback module, THERMO, was developed and integrated into the BGCore system. To demonstrate the capabilities of the upgraded BGCore system, a coupled neutronic TH analysis of a full PWR core was performed. The BGCore results were compared with those of the state of the art 3D deterministic nodal diffusion code DYN3D (Grundmann et al.; 2000). Very good agreement in major core operational parameters including k-eff eigenvalue, axial and radial power profiles, and temperature distributions between the BGCore and DYN3D results was observed. This agreement confirms the consistency of the implementation of the TH feedback module. Although the upgraded BGCore system is capable of performing both, depletion and TH analyses, the calculations in this study were performed for the beginning of cycle state with pre-generated fuel compositions. © 2011 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is growing interest in the use of 242mAm as a nuclear fuel. Because of its very high thermal fission cross section and its large number of neutrons released per fission, it can be used for various unique applications, such as space propulsion, medical applications, and compact energy sources. Since the thermal absorption cross section of 242mAm is very high, the best way to obtain 242mAm is by the capture of fast or epithermal neutrons in 241Am. However, fast spectrum reactors are not readily available. In this paper, we explore the possibility of producing 242mAm in existing pressurized water reactors (PWRs) with minimal interference in reactor performance. As suggested in previous studies on the subject, the 242mAm breeding targets are shielded with strong thermal absorbers in order to suppress the thermal neutron flux that causes 242mAm destruction. Since 242mAm enrichment within the Am target mainly depends on the neutron energy distribution, which in turn depends on the Am target thickness and on the neutron filter cutoff energy (thermal absorber type), this unique Am target design was developed. In our study, Cd, Sm, and Gd were considered as thermal neutron filters, as suggested by Cesana et al. The most favorable results were obtained by irradiating Am targets covered either with Gd or Cd. In these cases, up to 8.65% enrichment of 242mAm is obtained after 4.5 yr (three successive PWR fuel cycles) of irradiation. It was also found that significant quantities [up to 1.3 kg/GW (electric)-yr] of 242mAm can be obtained in PWR reactors without notable interference with reactor performance. However, in order to maintain the original fuel cycle length, the enrichment of the driver (UO2) fuel must be increased by ∼1%, raised from the conventional 4.5 to 5.5%, depending on the thermal neutron filter used. The most important reactivity feedback coefficients for fuel assemblies containing the 242mAm breeding targets were evaluated and found to be close to those of a standard PWR. Another product of neutron capture in the 241Am reaction is 238Pu. It was found that in a typical 1000 MW (electric) PWR core with one-third of the fuel assemblies containing 241Am targets, up to 15.1 kg of 238Pu enriched to 80% can be produced per year.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, a new numerical benchmark exercise for High Temperature Gas Cooled Reactor (HTGR) fuel depletion was defined. The purpose of this benchmark is to provide a comparison basis for different codes and methods applied to the burnup analysis of HTGRs. The benchmark specifications include three different models: (1) an infinite lattice of tristructural isotropic (TRISO) fuel particles, (2) an infinite lattice of fuel pebbles, and (3) a prismatic fuel including fuel and coolant channels. In this paper, we present the results of the third stage of the benchmark obtained with MCNP based depletion code BGCore and deterministic lattice code HELIOS 1.9. The depletion calculations were performed for three-dimensional model of prismatic fuel with explicitly described TRISO particles as well as for two-dimensional model, in which double heterogeneity of the TRISO particles was eliminated using reactivity equivalent physical transformation (RPT). Generally, good agreement in the results of the calculations obtained using different methods and codes was observed.