999 resultados para Cassidulina reniforme, d13C


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Pliocene to Recent sediments from the southern Brazil Basin (DSDP Hole 515A, hydraulic piston core) were analyzed for evidence of episodic flow of Antarctic Bottom Water (AABW) through the Vema Channel. Carbonate-enriched layers punctuate the post-Pliocene section, otherwise composed predominantly of terrigenous silt and clay. Carbonate enrichment is thought to result from rapid deposition of fine-grained calcareous turbidites, originating in canyons incised on the northern margin of the Rio Grande Rise. The composition of benthic foraminiferal assemblages and the presence of stratigraphically displaced discoasters is consistent with a turbidite origin. Based on the presence of displaced Antarctic diatoms, AABW flow through the Vema Channel apparently has had a major influence on this site for only four periods during the last 2.7 Ma (about 45 to 250; 375 to 430; 700 to 780; 1320 to 1345 thousand yr. ago).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The North Atlantic at present is ventilated by overflow of the Denmark Strait, Iceland-Faeroe Ridge, Faeroe Bank Channel, and Wyville-Thompson Ridge. The evolution of Cenozoic abyssal circulation of this region was related to tectonic opening and subsidence of these sills. We used d13C records of the benthic foraminifer Cibicidoides to decipher the timing of tectonically controlled changes in bottom-water circulation in the eastern basins (Biscay and Iberian) of the northern North Atlantic. Records from Site 608 (Kings Trough, northeastern North Atlantic) show that from about 24 to 15 Ma (early to early middle Miocene), d13C values in the Kings Trough area were depleted relative to western North Atlantic values and were more similar to Pacific d13C values. This reflects less ventilation of the Kings Trough region as compared to the well-oxygenated western North Atlantic. Comparison of Oligocene d13C records from Site 119 (Bay of Biscay) with western North Atlantic records suggests that the eastern basin was also relatively isolated prior to 24 Ma. At about 15 Ma, d13C values at Site 608 attained values similar to the western North Atlantic, indicating increased eastern basin ventilation in the middle Miocene. This increased advection into the eastern basin predated a major d18O increase which occurred at about 14.6 Ma. Subsidence estimates of the Greenland-Scotland Ridge indicate that the deepening of the Iceland-Faeroe Ridge was coincident with the marked change in eastern basin deep-water ventilation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen- and carbon-isotope analyses have been performed on the Quaternary planktonic foraminifers of Sites 548 and 549 (DSDP Leg 80) to investigate major water mass changes that occurred in the northeastern Atlantic at different glacial-interglacial cycles and to compare them with the well-defined picture of 18,000 yr. ago. Oxygen-isotope stratigraphy also provides a chronological framework for the more important data on the fauna and flora. Although bioturbation and sedimentary gaps obliterate the climatic and stratigraphic record, general trends in the oceanographic history can be deduced from the isotopic data. Isotopic stratigraphy has tentatively been delineated down to isotopic Stage 16 at Site 548 and in Hole 549A. This stratigraphy fits well with that deduced from benthic foraminiferal d18O changes and with bioclimatic zonations based on foraminiferal associations at Site 549. Variations in the geographic extension and in the flux of the Gulf Stream subtropical waters are inferred from both d18O and d13C changes. Maximal fluxes occurred during the late Pliocene. Northward extension of subtropical waters increased through the various interglacial phases of the early Pleistocene and decreased through the late Pleistocene interglacial phases. Conversely, glacial maxima were more intense after Stage 16. Isotopic Stages 12 and 16 mark times of important change in water mass circulation. Oxygen- and carbon-isotope analyses have been performed on the Quaternary planktonic foraminifers of Sites 548 and 549 (DSDP Leg 80) to investigate major water mass changes that occurred in the northeastern Atlantic at different glacial-interglacial cycles and to compare them with the well-defined picture of 18,000 yr. ago. Oxygen-isotope stratigraphy also provides a chronological framework for the more important data on the fauna and flora. Although bioturbation and sedimentary gaps obliterate the climatic and stratigraphic record, general trends in the oceanographic history can be deduced from the isotopic data. Isotopic stratigraphy has tentatively been delineated down to isotopic Stage 16 at Site 548 and in Hole 549A. This stratigraphy fits well with that deduced from benthic foraminiferal d18O changes and with bioclimatic zonations based on foraminiferal associations at Site 549. Variations in the geographic extension and in the flux of the Gulf Stream subtropical waters are inferred from both d18O and d13C changes. Maximal fluxes occurred during the late Pliocene. Northward extension of subtropical waters increased through the various interglacial phases of the early Pleistocene and decreased through the late Pleistocene interglacial phases. Conversely, glacial maxima were more intense after Stage 16. Isotopic Stages 12 and 16 mark times of important change in water mass circulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nodules occur in the siliceous calcareous ooze and siliceous marl at Site 503 in the eastern equatorial Pacific. They are present below a depth of about 11 meters throughout the green-colored reduced part of the section down to 228 meters, although they are most abundant between 30 and 85 meters. They are cylindrical or barrel-shaped, up to 70 mm long, and usually have an axial channel through them or are hollow. They appear to have formed around and/or within burrows. XRD studies and microprobe analyses show that they are homogeneous and consist of calcian rhododrosite and minor calcite; Mn is present to the extent of about 30%. Isotopic analyses of the carbonate give carbon values which range from -1.2 per mil to -3.8 per mil, and oxygen isotope compositions vary from +4.0 per mil to +6.0 per mil. These values are different from those for marine-derived carbonates as exemplified by the soft sediment filling of a burrow: d13C, -0.26 per mil; d18O, +1.05 per mil. The carbon isotope data indicate that carbonate derived (possibly indirectly) from seawater was mixed with some produced by organic diagenesis to form the nodules. The d18O values suggest that although they formed near the sediment surface, some modification or the introduction of additional diagenetic carbonate occurred during burial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of intrusive thermal stress have been studied on a number of Pleistocene sediment samples obtained from Leg 64 of the DSDP-IPOD program in the Gulf of California. Samples were selected from Sites 477, 478 and 481 where the organic matter was subjected to thermal stress from sill intrusions. For comparison purposes, samples from Sites 474 and 479 were selected as representative of unaltered material. The GC and GC-MS data show that lipids of the thermally unaltered samples were derived from microbial and terrestrial higher-plant detritus. Samples from sill proximities were found to contain thermally-derived distillates and those adjacent to sills contained essentially no lipids. Curie point pyrolysis combined with GC and GC-MS was used to show that kerogens from the unaltered samples reflected their predominantly autochthonous microbial origin. Pyrograms of the altered kerogens were much less complex than the unaltered samples, reflecting the thermal effects. The kerogens adjacent to the sills produce little or no pyrolysis products since these intrusions into unconsolidated, wet sediments resulted in in situ pyrolysis of the organic matter. Examination of the kerogens by ESR showed that spin density and line width pass through a maximum during the course of alteration but ESR g-values show no correlation with maturity. Stable carbon isotope (d13C) values of kerogens decrease by 1-1.5 per mil near the sills at Sites 477 and 481 and the atomic N/C decreases slightly with proximity to a smaller sill at Site 478. Differences in maturation behavior between Site 477 and 481 and Site 478 are attributed to dissimilarities in thermal stress and to chemical and isotopic heterogeneity of Guaymas Basin protokerogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At marine seeps, methane is microbially oxidized resulting in the precipitation of carbonates close to the seafloor. Methane oxidation leads to sulfate depletion in sediment pore water, which induces a change in redox conditions. Rare earth element (REE) patterns of authigenic carbonate phases collected from modern seeps of the Gulf of Mexico, the Black Sea, and the Congo Fan were analyzed. Different carbonate minerals including aragonite and calcite with different crystal habits have been selected for analysis. Total REE content (SumREE) of seep carbonates varies widely, from 0.1 ppm to 42.5 ppm, but a common trend is that the SumREE in microcrystalline phases is higher than that of the associated later phases including micospar, sparite and blocky cement, suggesting that SumREE may be a function of diagenesis. The shale-normalized REE patterns of the seep carbonates often show different Ce anomalies even in samples from a specific site, suggesting that the formation conditions of seep carbonates are variable and complex. Overall, our results show that apart from anoxic, oxic conditions are at least temporarily common in seep environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The benthic isotopic record of Miocene Cibicidoides from Site 709 provides a record of conditions in the Indian Ocean at a depth of about 3200 mbsf. As expected, the record qualitatively resembles those of other Deep Sea Drilling Project and Ocean Drilling Program sites. The data are consistent with the scenario for the evolution of thermohaline circulation in the Miocene Indian Ocean proposed by Woodruff and Savin (1989, doi:10.1029/PA004i001p00087). Further testing of that scenario, however, requires isotopic data for Cibicidoides from other Indian Ocean sites. There is a correlation between d13C values of Cibicidoides and planktonic:benthic (P:B)ratios of Site 709 sediments, implying a causal relationship between the corrosiveness of deep waters and concentration of CO2 derived from oxidation of organic matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present modern B/Ca core-top calibrations for the epifaunal benthic foraminifer Nuttallides umbonifera and the infaunal Oridorsalis umbonatus to test whether B/Ca values in these species can be used for the reconstruction of paleo-D[[CO3]2-]. O. umbonatus originated in the Late Cretaceous and remains extant, whereas N. umbonifera originated in the Eocene and is the closest extant relative to Nuttallides truempyi, which ranges from the Late Cretaceous through the Eocene. We measured B/Ca in both species in 35 Holocene sediment samples from the Atlantic, Pacific and Southern Oceans. B/Ca values in epifaunal N. umbonifera (~ 85-175 µmol/mol) are consistently lower than values reported for epifaunal Cibicidoides (Cibicides) wuellerstorfi (130-250 µmol/mol), though the sensitivity of D[[CO3]2-] on B/Ca in N. umbonifera (1.23 ± 0.15) is similar to that in C. wuellerstorfi (1.14 ± 0.048). In addition, we show that B/Ca values of paired N. umbonifera and its extinct ancestor, N. truempyi, from Eocene cores are indistinguishable within error. In contrast, both the B/Ca (35-85 µmol/mol) and sensitivity to D[[CO3]2-] (0.29 ± 0.20) of core-top O. umbonatus are considerably lower (as in other infaunal species), and this offset extends into the Paleocene. Thus the B/Ca of N. umbonifera and its ancestor can be used to reconstruct bottom water D[[CO3]2?], whereas O. umbonatus B/Ca appears to be buffered by porewater [[CO3]2-] and suited for constraining long-term drift in seawater B/Ca.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A continuous 10-m-long section consisting of roughly two thirds Ethmodiscus rex (a diatom) and one third mixed planktonic foraminifera was identified in a core from 3800 m depth at 9°S on the Indian Ocean's 90°E Ridge. Radiocarbon dates place the onset of deposition of this layer at >30,000 years B.P. and its termination at close to 11,000 years B.P. However, precise dating of the foraminifera from the Ethmodiscus layer itself proved to be impossible owing to the presence of secondary calcite presumably precipitated from the pore waters. During the Holocene, high calcium carbonate content ooze free of diatoms was deposited at this locale. As the site currently lies beneath the pathway taken by upper ocean waters entering the Indian Ocean from the Pacific (via the Indonesian Straits), it appears that during glacial time, thermocline waters moving along this same path provided the silica and other nutrients required by these diatoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluid circulation in peridotite-hosted hydrothermal systems influences the incorporation of carbon into the oceanic crust and its long-term storage. At low to moderate temperatures, serpentinization of peridotite produces alkaline fluids that are rich in CH4 and H2. Upon mixing with seawater, these fluids precipitate carbonate, forming an extensive network of calcite veins in the basement rocks, while H2 and CH4 serve as an energy source for microorganisms. Here, we analyzed the carbon geochemistry of two ancient peridotite-hosted hydrothermal systems: 1) ophiolites cropping out in the Northern Apennines, and 2) calcite-veined serpentinites from the Iberian Margin (Ocean Drilling Program (ODP) Legs 149 and 173), and compare them to active peridotite-hosted hydrothermal systems such as the Lost City hydrothermal field (LCHF) on the Atlantis Massif near the Mid-Atlantic Ridge (MAR). Our results show that large amounts of carbonate are formed during serpentinization of mantle rocks exposed on the seafloor (up to 9.6 wt.% C in ophicalcites) and that carbon incorporation decreases with depth. In the Northern Apennine serpentinites, serpentinization temperatures decrease from 240 °C to < 150 °C, while carbonates are formed at temperatures decreasing from ~ 150 °C to < 50 °C. At the Iberian Margin both carbonate formation and serpentinization temperatures are lower than in the Northern Apennines with serpentinization starting at ~ 150 °C, followed by clay alteration at < 100 °C and carbonate formation at < 19-44 °C. Comparison with various active peridotite-hosted hydrothermal systems on the MAR shows that the serpentinites from the Northern Apennines record a thermal evolution similar to that of the basement of the LCHF and that tectonic activity on the Jurassic seafloor, comparable to the present-day processes leading to oceanic core complexes, probably led to formation of fractures and faults, which promoted fluid circulation to greater depth and cooling of the mantle rocks. Thus, our study provides further evidence that the Northern Apennine serpentinites host a paleo-stockwork of a hydrothermal system similar to the basement of the LCHF. Furthermore, we argue that the extent of carbonate uptake is mainly controlled by the presence of fluid pathways. Low serpentinization temperatures promote microbial activity, which leads to enhanced biomass formation and the storage of organic carbon. Organic carbon becomes dominant with increasing depth and is the principal carbon phase at more than 50-100 m depth of the serpentinite basement at the Iberian Margin. We estimate that annually 1.1 to 2.7 × 1012 g C is stored within peridotites exposed to seawater, of which 30-40% is fixed within the uppermost 20-50 m mainly as carbonate. Additionally, we conclude that alteration of oceanic lithosphere is an important factor in the long-term global carbon cycle, having the potential to store carbon for millions of years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Beringian climate and environmental history are poorly characterized at its easternmost edge. Lake sediments from the northern Yukon Territory have recorded sedimentation, vegetation, summer temperature and precipitation changes since ~16 cal ka BP. Herb-dominated tundra persisted until ~14.7 cal ka BP with mean July air temperatures less than or equal to 5 °C colder and annual precipitation 50 to 120 mm lower than today. Temperatures rapidly increased during the Bølling/Allerød interstadial towards modern conditions, favoring establishment of Betula-Salix shrub tundra. Pollen-inferred temperature reconstructions recorded a pronounced Younger Dryas stadial in east Beringia with a temperature drop of ~1.5 °C (~2.5 to 3.0 °C below modern conditions) and low net precipitation (90 to 170 mm) but show little evidence of an early Holocene thermal maximum in the pollen record. Sustained low net precipitation and increased evaporation during early Holocene warming suggest a moisture-limited spread of vegetation and an obscured summer temperature maximum. Northern Yukon Holocene moisture availability increased in response to a retreating Laurentide Ice Sheet, postglacial sea level rise, and decreasing summer insolation that in turn led to establishment of Alnus-Betula shrub tundra from ~5 cal ka BP until present, and conversion of a continental climate into a coastal-maritime climate near the Beaufort Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During IODP Expedition 310 (Tahiti Sea Level), drowned Pleistocene-Holocene barrier-reef terraces were drilled on the slope of the volcanic island. The deglacial reef succession typically consists of a coral framework encrusted by coralline algae and later by microbialites; the latter make up < 80% of the rock volume. Lipid biomarkers were analyzed in order to identify organisms involved in reef-microbialite formation at Tahiti, as the genesis of deglacial microbialites and the conditions favoring their formation are not fully understood. Sterols plus saturated and monounsaturated short-chain fatty acids predominantly derived from both marine primary producers (algae) and bacteria comprise 44 wt% of all lipids on average, whereas long-chain fatty acids and long-chain alcohols derived from higher land plants represent an average of only 24 wt%. Bacterially derived mono-O-alkyl glycerol ethers (MAGEs) and branched fatty acids (10-Me-C16:0; iso- and anteiso-C15:0 and -C17:0) are exceptionally abundant in the microbial carbonates (average, 19 wt%) and represent biomarkers of intermediate-to-high specificity for sulfate-reducing bacteria. Both are relatively enriched in 13C compared to eukaryotic lipids. No lipid biomarkers indicative of cyanobacteria were preserved in the microbialites. The abundances of Al, Si, Fe, Mn, Ba, pyroxene, plagioclase, and magnetite reflect strong terrigenous influx with Tahitian basalt as the major source. Chemical weathering of the basalt most likely elevated nutrient levels in the reefs and this fertilization led to an increase in primary production and organic matter formation, boosting heterotrophic sulfate reduction. Based on the observed biomarker patterns, sulfate-reducing bacteria were apparently involved in the formation of microbialites in the coral reefs off Tahiti during the last deglaciation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microthermometric and isotopic analyses of fluid inclusions in primitive olivine gabbros, oxide gabbros, and evolved granitic material recovered from Ocean Drilling Program Hole 735B at the Southwest Indian Ridge provide new insights into the evolution of C-O-H-NaCl fluids in the plutonic foundation of the oceanic crust. The variably altered and deformed plutonic rocks span a crustal section of over 1500 m and record a remarkably complex magma-hydrothermal history. Magmatic fluids within this suite followed two chemically distinct paths during cooling through the subsolidus regime: the first path included formation of CO2+CH4+H2O+C fluids with up to 43 mole% CH4; the second path produced hypersaline brines that contain up to 50% NaCl equivalent salinities. Subsequent to devolatilization, respeciation of magmatic CO2, attendant graphite precipitation, and cooling from 800°C to 500°C promoted formation of CH4-enriched fluids. These fluids are characterized by average d13C(CH4) values of -27.1+/-4.3 per mil (N=45) with associated d13C(CO2) compositions ranging from -24.9 per mil to -1.9 per mil (N=39), and average dD values of exsolved vapor of -41+/-12 per mil (N=23). In pods, veins, and lenses of highly fractionated residual material, hypersaline brines formed during condensation and by direct exsolution in the absence of a conjugate vapor phase. Entrapped CO2+CH4+H2O-rich fluids within many oxide-bearing rocks and felsic zones are significantly depleted in 13C (with d13C(CO2) values down to about -25 per mil) and contain CO2 concentrations higher than those predicted by equilibrium devolatilization models. We hypothesize that lower effective pressures in high-temperature shear zones promoted infiltration of highly fractionated melts and compositionally evolved volatiles into focused zones of deformation, significantly weakening the rock strength. In felsic-rich zones, volatile build-up may have driven hydraulic fracturing of gabbroic wall rocks resulting in the formation of magmatic breccias. Comparison of isotopic compositions of fluids in plutonic rocks from 735B, the MARK area of the Mid-Atlantic Ridge, and the Mid-Cayman Rise indicate (1) that the carbon isotope composition of the lower oceanic crust may be far more heterogeneous than previously believed and (2) that carbon-bearing species in the oceanic crust and their distribution at depth are highly variable.