926 resultados para Canonical form
Resumo:
Diabetes Mellitus is not a disease, but a group of diseases. Common to all types of diabetes is high levels of blood glucose produced from a variety of causes. In 2006, the American Diabetes Association ranked diabetes as the fifth leading cause of death in the United States. The complications and consequences are serious and include nephropathy, retinopathy, neuropathy, heart disease, amputations, pregnancy complications, sexual dysfunction, biochemical imbalances, susceptibility and sensitivity to many other diseases and in some cases death. ^ The serious nature of diabetes mellitus and its complications has compelled researchers to devise new strategies to reach population segments at high risk. Various avenues of outreach have been attempted. This pilot program is not unique in using a health museum as a point of outreach. However health museums have not been a major source of interventions, either. Little information was available regarding health museum visitor demographics, visitation patterns, companion status and museum trust levels prior to this pilot intervention. This visitor information will improve planning for further interventions and studies. ^ This thesis also examined prevalence data in a temporal context, the populations at risk for diabetes, the collecting agencies, and other relevant collected data. The prevalence of diabetes has been rapidly increasing. The increase is partially explained by refinement of the definition of diabetes as the etiology has become better understood. Increasing obesity and sedentary lifestyles have contributed to the increase, as well as the burdensome increase on minority populations. ^ Treatment options are complex and have had limited effectiveness. This would lead one to conclude that prevention and early diagnosis are preferable. However, the general public has insufficient awareness and education regarding diabetes symptoms and the serious risks and complications the disease can cause. Reaching high risk, high prevalence, populations is challenging for any intervention. During its “free family Thursdays” The Health Museum (Houston, Texas) has attracted a variety of ethnic patrons; similar to the Houston and Harris County demographics. This research project explored the effectiveness of a pilot diabetes educational intervention in a health museum setting where people chose to visit. ^
Resumo:
Teen pregnancy is a continuing problem, bringing with it a host of associated health and social risks. Alternative school students are especially at risk, but are historically under-represented in research. This is especially problematic in that instruments are needed to guide effective intervention development, but psychometrics for these instruments cannot be assumed when used in new populations. Decisional balance from the transtheoretical model offers a framework for understanding condom decision making, but has not been tested with alternative school students. Using responses from 640 subjects from Safer Choices 2 (a school-based HIV/STD/pregnancy prevention program implemented in 10 urban, southwestern alternative schools), a decisional balance scale for condom use was examined. A two-factor, mildly correlated model fit the data well. Tests of invariance examined scale functioning within gender and racial/ethnic groups. The underlying structure varied slightly based on subgroup, but on a practical level the impact on the use of scales was minimal. The structure and loadings were invariant across experimental condition. The pro scale was associated with a lower probability of having engaged in unprotected sexual behavior for sexually active subjects, and this association remained significant while controlling for demographic variables. The con scale did not show a significant association with engagement in unprotected sexual behaviors. Limitations and directions for future research were also discussed.^
Resumo:
Cell differentiation and pattern formation are fundamental processes in animal development that are under intense investigation. The mouse retina is a good model to study these processes because it has seven distinct cell types, and three well-laminated nuclear layers that form during embryonic and postnatal life. β-catenin functions as both the nuclear effector for the canonical Wnt pathway and a cell adhesion molecule, and is required for the development of various organs. To study the function of β-catenin in retinal development, I used a Cre-loxP system to conditionally ablate β-catenin in the developing retina. Deletion of β-catenin led to disrupted laminar structure but did not affect the differentiation of any of the seven cell types. Eliminating β-catenin did not reduce progenitor cell proliferation, although enhanced apoptosis was observed. Further analysis showed that disruption of cell adhesion was the major cause of the observed patterning defects. Overexpression of β-catenin during retinal development also disrupted the normal retinal lamination and caused a transdifferentiation of neurons into pigmented cells. The results indicate that β-catenin functions as a cell adhesion molecule but not as a Wnt pathway component during retinal neurogenesis, and is essential for lamination but not cell differentiation. The results further imply that retinal lamination and cell differentiation are genetically separable processes. ^ Sonic hedgehog (shh) is expressed in retinal ganglion cells under the control of transcription factor Pou4f2 during retinal development. Previous studies identified a phylogenetically conserved region in the first intron of shh containing a Pou4f2 binding site. Transgenic reporter mice in which reporter gene expression was driven by this region showed that this element can direct gene expression specifically in the retina, but expression was not limited to the ganglion cells. From these data I hypothesized that this element is required for shh expression in the retina but is not sufficient for specific ganglion cell expression. To further test this hypothesis, I created a conditional allele by flanking this region with two loxP sites. Lines carrying this allele will be crossed with retinal-specific Cre lines to remove this element in the retina. My hypothesis predicts that alteration in shh expression and subsequent retinal defects will occur in the retinas of these mice. ^
Resumo:
The Armadillo family catenin proteins function in multiple capacities including cadherin-mediated cell-cell adhesion and nuclear signaling. The newest catenin, p120 catenin, differs from the classical catenins and binds to the membrane-proximal domain of cadherins. Recently, a novel transcription factor Kaiso was found to interact with p120 catenin, suggesting that p120 catenin also possesses a nuclear function. We isolated the Xenopus homolog of Kaiso, XKaiso, from a Xenopus stage 17 cDNA library. XKaiso contains an amino-terminal BTB/POZ domain and three carboxyl-terminal zinc fingers. The XKaiso transcript was present maternally and expressed throughout early embryonic development. XKaiso's spatial expression was defined via in situ hybridization and was found localized to the brain, eye, ear, branchial arches, and spinal cord. Co-immunoprecipitation of Xenopus p120 catenin and XKaiso demonstrated their mutual association, while related experiments employing differentially epitope-tagged XKaiso constructs suggest that XKaiso also self-associates. On the functional level, reporter assays employing a chimera of XKaiso fused to the GAL4 DNA binding domain indicated that XKaiso is a transcriptional repressor. To better understand the significance of the Kaiso-p120 catenin complex in vertebrate development, Kaiso knock-down experiments were undertaken, and the modulatory role of p120 catenin in Kaiso function examined during Xenopus development. Using morpholino antisense oligonucleotides to block translation of XKaiso, XKaiso was found to be essential for Xenopus gastrulation, being required for correct morphogenetic movements in early embryogenesis. Molecular marker analyses indicated that one target gene of the Wnt/β-catenin pathway, Siamois, is significantly increased in embryos depleted for XKaiso, while other dorsal, ventral, and mesodermal cell fate markers were unaltered. In addition, the non-canonical Wnt-11, known to participate in planar cell polarity/convergent extension processes, was significantly upregulated following depletion of XKaiso. Such increased Wnt-11 expression likely contributed to the XKaiso depletion phenotype because a dominant negative form of Wnt-11 or of the downstream effector Dishevelled partially rescued the observed gastrulation defects. These results show that XKaiso is essential for proper gastrulation movements, resulting at least in part from its modulation of non-canonical Wnt signaling. The significance of the XKaiso-p120 catenin interaction has yet to be determined, but appears to include a role in modulating genes promoting canonical and non-canonical Wnt signals. ^
Resumo:
Microscopic and electron probe examination of some manganese nodules show that they consist of segregations of manganese-iron oxides in an interstitial material almost free of manganese but rich in iron and silicates. The segregations are widely spaced in the volcanic cores of the nodules but become more abundant towards their outer crusts where they form the centres of linked polygons of interstitial materials. Most of the minor elements are concentrated in the segregations compared to the interstitial materials. It is suggested that the structures observed result partly from solution and reprecipitation of elements in the original volcanic cores of the nodules and partly from the replacement and coating of these cores by manganese-iron oxides precipitated from sea water.
Resumo:
This Atlas summarises the global distribution of extant organic-walled dinoflagellate cysts in the form of 61 maps illustrated by the relative abundance of individual cyst taxa in recent marine sediments from the Atlantic Ocean and adjacent basins, the Antarctic region (South Atlantic, southwestern Pacific and southern Indian Ocean sections), the Arabian Sea and the northwestern Pacific. This synthesis is based on the integration of literature sources together with data from 835 marine surface sediments prepared on a comparable methodology and taxonomy. The relationships between distribution patterns of cyst species and the surface-water parameters (temperature, salinity, phosphate and nitrate concentrations) are documented with graphs depicting the relative abundance of species in relation to seasonal and annual values of the above mentioned parameters at the sample sites. Two ordination techniques (detrended correspondence analysis and canonical correspondence analysis) have been carried out to statistically illustrate the relationships between species distribution and sea-surface conditions. Results have been compared with previously published records and an overview of the ecological significance of each individual species is presented. Characterisations of selected environments as well as a discussion about how additional processes such as preservation and transport could have affected the present dataset are included.
Resumo:
Flow transverse bedforms (ripples and dunes) are ubiquitous in rivers and coastal seas. Local hydrodynamics and transport conditions depend on the size and geometry of these bedforms, as they constitute roughness elements at the bed. Bedform influence on flow energy must be considered for the understanding of flow dynamics, and in the development and application of numerical models. Common estimations or predictors of form roughness (friction factors) are based mostly on data of steep bedforms (with angle-of-repose lee slopes), and described by highly simplified bedform dimensions (heights and lengths). However, natural bedforms often are not steep, and differ in form and hydraulic effect relative to idealised bedforms. Based on systematic numerical model experiments, this study shows how the hydraulic effect of bedforms depends on the flow structure behind bedforms, which is determined by the bedform lee side angle, aspect ratio and relative height. Simulations reveal that flow separation behind bedform crests and, thus, a hydraulic effect is induced at lee side angles steeper than 11 to 18° depending on relative height, and that a fully developed flow separation zone exists only over bedforms with a lee side angle steeper than 24°. Furthermore, the hydraulic effect of bedforms with varying lee side angle is evaluated and a reduction function to common friction factors is proposed. A function is also developed for the Nikuradse roughness (k s), and a new equation is proposed which directly relates k s to bedform relative height, aspect ratio and lee side angle.
Resumo:
Large asymmetric bed forms commonly develop in rivers. The turbulence associated with flow separation that develops over their steep lee side is responsible for the form shear stress which can represent a substantial part of total shear stress in rivers. This paper uses the Delft3D modeling system to investigate the effects of bed form geometry and forcing conditions on flow separation length and associated turbulence, and bed form shear stress over angle-of-repose (30 lee side angle) bed forms. The model was validated with lab measurements that showed sufficient agreement to be used for a systematic analysis. The influence of flow velocity, bed roughness, relative height (bed form height/water depth), and aspect ratio (bed form height/length) on the variations of the normalized length of the flow separation zone, the extent of the wake region (where the turbulent kinetic energy (TKE) was more than 70% of the maximum TKE), the average TKE within the wake region and the form shear stress were investigated. Form shear stress was found not to scale with the size of the flow separation zone but to be related to the product of the normalized extent of the wake region (extent of the wake region/extent of water body above the bed form) and the average TKE within the wake region. The results add to understanding of the hydrodynamics of bed forms and may be used for the development of better parameterizations of smallscale processes for application in large-scale studies.