975 resultados para Calcification, Physiologic
Resumo:
Members of the vascular endothelial growth factor (VEGF) family are critical players in angiogenesis and lymphangiogenesis. Although VEGF-A has been shown to exert fundamental functions in physiologic and pathologic angiogenesis, the exact role of the VEGF family member placental growth factor (PlGF) in tumor angiogenesis has remained controversial. To gain insight into PlGF function during tumor angiogenesis, we have generated transgenic mouse lines expressing human PlGF-1 in the beta cells of the pancreatic islets of Langerhans (Rip1PlGF-1). In single-transgenic Rip1PlGF-1 mice, intra-insular blood vessels are found highly dilated, whereas islet physiology is unaffected. Upon crossing of these mice with the Rip1Tag2 transgenic mouse model of pancreatic beta cell carcinogenesis, tumors of double-transgenic Rip1Tag2;Rip1PlGF-1 mice display reduced growth due to attenuated tumor angiogenesis. The coexpression of transgenic PlGF-1 and endogenous VEGF-A in the beta tumor cells of double-transgenic animals causes the formation of low-angiogenic hPlGF-1/mVEGF-A heterodimers at the expense of highly angiogenic mVEGF-A homodimers resulting in diminished tumor angiogenesis and reduced tumor infiltration by neutrophils, known to contribute to the angiogenic switch in Rip1Tag2 mice. The results indicate that the ratio between the expression levels of two members of the VEGF family of angiogenic factors, PlGF-1 and VEGF-A, determines the overall angiogenic activity and, thus, the extent of tumor angiogenesis and tumor growth.
Resumo:
The chest X-ray of a 61-year-old man with severe aortic and mitral stenosis revealed extensive, circularly arranged calcifications in the wall of the left atrial appendage. He died soon after admission to hospital and autopsy confirmed the atrial calcifications in association with severe mitral stenosis. Although such calcification of the left atrial wall is rare, it can be of importance because it may make the usual surgical approach to mitral valve replacement impossible.
Resumo:
The vitamin D(3) and nicotine (VDN) model is a model of isolated systolic hypertension (ISH) due to arterial calcification raising arterial stiffness and vascular impedance similar to an aged and stiffened arterial tree. We therefore analyzed the impact of this aging model on normal and diseased hearts with myocardial infarction (MI). Wistar rats were treated with VDN (n = 9), subjected to MI by coronary ligation (n = 10), or subjected to a combination of both MI and VDN treatment (VDN/MI, n = 14). A sham-treated group served as control (Ctrl, n = 10). Transthoracic echocardiography was performed every 2 wk, whereas invasive indexes were obtained at week 8 before death. Calcium, collagen, and protein contents were measured in the heart and the aorta. Systolic blood pressure, pulse pressure, thoracic aortic calcium, and end-systolic elastance as an index of myocardial contractility were highest in the aging model group compared with MI and Ctrl groups (P(VDN) < 0.05, 2-way ANOVA). Left ventricular wall stress and brain natriuretic peptide (P(VDNxMI) = not significant) were highest, while ejection fraction, stroke volume, and cardiac output were lowest in the combined group versus all other groups (P(VDNxMI) < 0.05). The combination of ISH due to this aging model and MI demonstrates significant alterations in cardiac function. This model mimics several clinical phenomena of cardiovascular aging and may thus serve to further study novel therapies.
Resumo:
Drosophila mutants have played an important role in elucidating the physiologic function of genes. Large-scale projects have succeeded in producing mutations in a large proportion of Drosophila genes. Many mutant fly lines have also been produced through the efforts of individual laboratories over the past century. In an effort to make some of these mutants more useful to the research community, we systematically mapped a large number of mutations affecting genes in the proximal half of chromosome arm 2L to more precisely defined regions, defined by deficiency intervals, and, when possible, by individual complementation groups. To further analyze regions 36 and 39-40, we produced 11 new deficiencies with gamma irradiation, and we constructed 6 new deficiencies in region 30-33, using the DrosDel system. trans-heterozygous combinations of deficiencies revealed 5 additional functions, essential for viability or fertility.
Resumo:
AIM: To evaluate the pulp and periodontal healing of laterally luxated permanent teeth. MATERIAL AND METHODS: Patients presenting with lateral luxation of permanent teeth during 2001-2002 were enrolled in this clinical study. Laterally luxated teeth were repositioned and splinted with a TTS/composite resin splint for 4 weeks. Immediate (prophylactic) root-canal treatment was performed in severely luxated teeth with radiographically closed apices. All patients received tetracycline for 10 days. Re-examinations were performed after 1, 2, 3, 6, 12 and 48 months. RESULTS: All 47 laterally luxated permanent teeth that could be followed over the entire study period survived. In 10 teeth (21.3%), a prophylactic root-canal treatment was performed within 2 weeks following injury. The remaining 37 teeth showed the following characteristics at the 4-year re-examination: 19 teeth (51.4%) had pulp survival (no clinical or radiographic signs or symptoms), nine teeth (24.3%) presented with pulp canal calcification, and pulp necrosis was seen in another nine teeth (24.3%), within the first year after trauma. None of the teeth with a radiographically open apex at the time of lateral luxation showed complications. External root resorption was only seen in one tooth. CONCLUSIONS: Laterally luxated permanent teeth with incomplete root formation have a good prognosis, with all teeth surviving in this study. The most frequent complication was pulp necrosis that was only seen in teeth with closed apices.
Resumo:
Two bombesin analogs, Demobesin 4 and Demobesin 1, were characterized in vitro as gastrin-releasing peptide (GRP) receptor agonist and antagonist, respectively, and were compared as (99m)Tc-labeled ligands for their in vitro and in vivo tumor-targeting properties. METHODS: N(4)-[Pro(1),Tyr(4),Nle(14)]Bombesin (Demobesin 4) and N(4)-[d-Phe(6),Leu-NHEt(13),des-Met(14)]bombesin(6-14) (Demobesin 1) were characterized in vitro for their binding properties with GRP receptor autoradiography using GRP receptor-transfected HEK293 cells, PC3 cells, and human prostate cancer specimens. Their ability to modulate calcium mobilization in PC3 and transfected HEK293 cells was analyzed as well as their ability to trigger internalization of the GRP receptor in transfected HEK293 cells, as determined qualitatively by immunofluorescence microscopy and quantitatively by enzyme-linked immunosorbent assay (ELISA). Further, their internalization properties as (99m)Tc-labeled radioligands were tested in vitro in both cell lines. Finally, their biodistribution was analyzed in PC3 tumor-bearing mice. RESULTS: A comparable binding affinity with the 50% inhibitory concentration (IC(50)) in the nanomolar range was measured for Demobesin 4 and Demobesin 1 in all tested tissues. Demobesin 4 behaved as an agonist by strongly stimulating calcium mobilization and by triggering GRP receptor internalization. Demobesin 1 was ineffective in stimulating calcium mobilization and in triggering GRP receptor internalization. However, in these assays, it behaved as a competitive antagonist as it reversed completely the agonist-induced effects in both systems. (99m)Tc-Labeled Demobesin 1 was only weakly taken up by PC3 cells or GRP receptor-transfected HEK293 cells (10% and 5%, respectively, of total added radioactivity) compared with (99m)Tc-labeled Demobesin 4 (45% of total added radioactivity in both cell lines). Remarkably, the biodistribution study revealed a much more pronounced uptake at 1, 4, and 24 h after injection of (99m)Tc-labeled Demobesin 1 in vivo into PC3 tumors than (99m)Tc-labeled Demobesin 4. In vivo competition experiments demonstrated a specific uptake in PC3 tumors and in physiologic GRP receptor-expressing tissues. The tumor-to-kidney ratios were 0.7 for Demobesin 4 and 5.2 for Demobesin 1 at 4 h. CONCLUSION: This comparative in vitro/in vivo study with Demobesin 1 and Demobesin 4 indicates that GRP receptor antagonists may be superior targeting agents to GRP receptor agonists, suggesting a change of paradigm in the field of bombesin radiopharmaceuticals.
Resumo:
Accelerated vascular calcification is a severe complication of chronic kidney disease contributing to high morbidity and mortality in patients undergoing renal replacement therapy. Sodium thiosulfate is increasingly used for the treatment of soft tissue calcifications in calciphylaxis. Therefore, we determined whether it also prevents development of vascular calcifications in chronic kidney disease. We found that uremic rats treated by thiosulfate had no histological evidence of calcification in the aortic wall whereas almost three-fourths of untreated uremic rats showed aortic calcification. Urinary calcium excretion was elevated and the calcium content of aortic, heart, and renal tissue was significantly reduced in the thiosulfate-treated compared to non-treated animals. Sodium thiosulfate treatment transiently lowered plasma ionized calcium and induced metabolic acidosis. It also lowered bone strength in the treated animals compared to their normal controls. Hence, sodium thiosulfate prevented vascular calcifications in uremic rats, likely by enhancing acid- and/or chelation-induced urinary calcium loss. The negative impact on rat bone integrity necessitates a careful risk-benefit analysis before sodium thiosulfate can be used in individual human patients.
Resumo:
This research focused on the to modification of the surface structure of titanium implants with nanostructured morphology of TiO2 nanotubes and studied the interaction of nanotubes with osteoblast cells to understand the parameters that affect the cell growth. The electrical, mechanical, and structural properties of TiO2 nanotubes were characterized to establish a better understanding on the properties of such nanoscale morphological structures. To achieve the objectives of this research work I transformed the titanium and its alloys, either in bulk sheet form, bulk machined form, or thin film deposited on another substrate into a surface of titania nanotubes using a low cost and environmentally friendly process. The process requires only a simple electrolyte, low cost electrode, and a DC power supply. With this simple approach of scalable nanofabrication, a typical result is nanotubes that are each approximately 100nm in diameter and have a wall thickness of about 20nm. By changing the fabrication parameters, independent nanotubes can be fabricated with open volume between them. Titanium in this form is termed onedimensional since electron transport is narrowly confined along the length of the nanotube. My Ph.D. accomplishments have successfully shown that osteoblast cells, the cells that are the precursors to bone, have a strong tendency to attach to the inside and outside of the titanium nanotubes onto which they are grown using their filopodia – cell’s foot used for locomotion – anchored to titanium nanotubes. In fact it was shown that the cell prefers to find many anchoring sites. These sites are critical for cell locomotion during the first several weeks of maturity and upon calcification as a strongly anchored bone cell. In addition I have shown that such a surface has a greater cell density than a smooth titanium surface. My work also developed a process that uses a focused and controllably rastered ion beam as a nano-scalpel to cut away sections of the osteoblast cells to probe the attachment beneath the main cell body. Ultimately the more rapid growth of osteoblasts, coupled with a stronger cell-surface interface, could provide cost reduction, shorter rehabilitation, and fewer follow-on surgeries due to implant loosening.
Resumo:
PURPOSE: We report the clinical, morphological, and ultrastructural findings of 13 consecutively explanted opacified Hydroview(R) (hydrogel) intraocular lenses (IOLs). Our purpose was to provide a comprehensive account on the possible factors involved in late postoperative opacification of these IOLs. PATIENTS AND METHODS: Thirteen consecutive opacified hydrogel IOLs (Hydroview H 60 M, Bausch ; Lomb) were explanted due to the significant visual impairment they caused. The IOLs underwent macroscopical examination, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and electrophoresis for protein detection. Three unused control Hydroview IOLs served for comparison. RESULTS: Macroscopical examination showed a diffuse or localized grey-whitish opacification within the IOL optic. TEM confirmed the presence of lesions inside the optic in all the explanted IOLs and revealed 3 patterns of deep deposits: a) diffuse, thick, granular, electron-dense ones; b) small, thin, lattice-like ones, with prominent electron-lucent areas; and c) elongated electron-dense formations surrounded by electron-lucent halos. SEM showed surface deposits on four IOLs. EDS revealed oxygen and carbon in all IOLs and documented calcium, phosphorus, silicon and/or iron in the deposits. Two of the patients with iron in their IOLs had eye surgery prior to their phacoemulsification. Iron correlated well with the second TEM pattern of deep lesions, whereas calcium with the third TEM pattern. No protein bands were detected on electrophoresis. Control lenses did not show any ultrastructural or chemical abnormality. CONCLUSIONS: The present study supports the presence of chemical alterations inside the polymer of the optic in late postoperative opacification of Hydroview IOLs. This opacification does not follow a unique pathway but may present under different ultrastructular patterns depending on the responsible factors. Mechanical stress during surgery may initiate a sequence of events where ions such as calcium, phosphorus, silicon, and/or iron, participate in a biochemical cascade that leads to gradual alteration of the polymer network. Intraocular inflammation due to previous operation may be a factor inducing opacification through increase of iron-binding capacity in the aqueous humour. Calcification accounts only partially for the opacification noted in this type of IOL.
Resumo:
Roads and highways present a unique challenge to wildlife as they exhibit substantial impacts on the surrounding ecosystem through the interruption of a number of ecological processes. With new roads added to the national highway system every year, an understanding of these impacts is required for effective mitigation of potential environmental impacts. A major contributor to these negative effects is the deposition of chemicals used in winter deicing activities to nearby surface waters. These chemicals often vary in composition and may affect freshwater species differently. The negative impacts of widespread deposition of sodium chloride (NaCl) have prompted a search for an `environmentally friendly' alternative. However, little research has investigated the potential environmental effects of widespread use of these alternatives. Herein, I detail the results of laboratory tests and field surveys designed to determine the impacts of road salt (NaCl) and other chemical deicers on amphibian communities in Michigan's Upper Peninsula. Using larval amphibians I demonstrate the lethal impacts of a suite of chemical deicers on this sensitive, freshwater species. Larval wood frogs (Lithobates sylvatica) were tolerant of short-term (96 hours) exposure to urea (CH4N2O), sodium chloride (NaCl), and magnesium chloride (MgCl2). However, these larvae were very sensitive to acetate products (C8H12CaMgO8, CH3COOK) and calcium chloride (CaCl2). These differences in tolerance suggest that certain deicers may be more harmful to amphibians than others. Secondly, I expanded this analysis to include an experiment designed to determine the sublethal effects of chronic exposure to environmentally realistic concentrations of NaCl on two unique amphibian species, L. sylvatica and green frogs (L. clamitans). L. sylvatica tend to breed in small, ephemeral wetlands and metamorphose within a single season. However, L. clamitans breed primarily in more permanent wetlands and often remain as tadpoles for one year or more. These species employ different life history strategies in this region which may influence their response to chronic NaCl exposure. Both species demonstrated potentially harmful effects on individual fitness. L. sylvatica larvae had a high incidence of edema suggesting the NaCl exposure was a significant physiologic stressor to these larvae. L. clamitans larvae reduced tail length during their exposure which may affect adult fitness of these individuals. In order to determine the risk local amphibians face when using these roadside pools, I conducted a survey of the spatial distribution of chloride in the three northernmost counties of Michigan. This area receives a relatively low amount of NaCl which is confined to state and federal highways. The chloride concentrations in this region were much lower than those in urban systems; however, amphibians breeding in the local area may encounter harmful chloride levels arising from temporal variations in hydroperiods. Spatial variation of chloride levels suggests the road-effect zone for amphibians may be as large as 1000 m from a salt-treated highway. Lastly, I performed an analysis of the use of specific conductance to predict chloride concentrations in natural surface water bodies. A number of studies have used this regression to predict chloride concentrations from measurements of specific conductance. This method is often chosen in the place of ion chromatography due to budget and time constraints. However, using a regression method to characterize this relationship does not result in accurate chloride ion concentration estimates.
Resumo:
MicroRNAs (miRNA) are negative regulators of gene expression at the posttranscriptional level, which are involved in tumorigenesis. Two miRNAs, miR-15a and miR-16, which are located at chromosome 13q14, have been implicated in cell cycle control and apoptosis, but little information is available about their role in solid tumors. To address this question, we established a protocol to quantify miRNAs from laser capture microdissected tissues. Here, we show that miR-15a/miR-16 are frequently deleted or down-regulated in squamous cell carcinomas and adenocarcinomas of the lung. In these tumors, expression of miR-15a/miR-16 inversely correlates with the expression of cyclin D1. In non-small cell lung cancer (NSCLC) cell lines, cyclins D1, D2, and E1 are directly regulated by physiologic concentrations of miR-15a/miR-16. Consistent with these results, overexpression of these miRNAs induces cell cycle arrest in G(1)-G(0). Interestingly, H2009 cells lacking Rb are resistant to miR-15a/miR-16-induced cell cycle arrest, whereas reintroduction of functional Rb resensitizes these cells to miRNA activity. In contrast, down-regulation of Rb in A549 cells by RNA interference confers resistance to these miRNAs. Thus, cell cycle arrest induced by these miRNAs depends on the expression of Rb, confirming that G(1) cyclins are major targets of miR-15a/miR-16 in NSCLC. Our results indicate that miR-15a/miR-16 are implicated in cell cycle control and likely contribute to the tumorigenesis of NSCLC.
Resumo:
The successful peptide receptor imaging of tumors, as exemplified for somatostatin receptors, is based on the overexpression of peptide receptors in selected tumors and the high-affinity binding to these tumors of agonist radioligands that are subsequently internalized into the tumor cells in which they accumulate. Although in vitro studies have shown ample evidence that the ligand-receptor complex is internalized, in vivo evidence of agonist-induced internalization of peptide receptors, such as somatostatin receptors, is missing. METHODS: Rats subcutaneously transplanted with the somatostatin receptor subtype 2 (sst(2))-expressing AR42J tumor cells were treated with intravenous injections of various doses of the sst(2) agonist [Tyr(3), Thr(8)]-octreotide (TATE) or of the sst(2) antagonist 1,4,7,10-tetraazacyclododecane-N,N',N'',N''',-tetraacetic acid (DOTA)-Bass and were sacrificed at various times ranging from 2.5 min to 24 h after injection. The tumors and pancreas were then removed from each animal. All tissue samples were processed for sst(2) immunohistochemistry using sst(2)-specific antibodies. RESULTS: Compared with the sst(2) receptors in untreated animals, which localized at the plasma membrane in pancreatic and AR42J tumor cells, the sst(2) receptors in treated animals are detected intracellularly after an intravenous injection of the agonist TATE. Internalization is fast, as the receptors are already internalizing 2.5 min after TATE injection. The process is extremely efficient, as most of the cell surface receptors internalize into the cell and are found in endosomelike structures after TATE injection. The internalization is most likely reversible, because 24 h after injection the receptors are again found at the cell surface. The process is also agonist-dependent, because internalization is seen with high-affinity sst(2) agonists but not with high-affinity sst(2) antagonists. The same internalization properties are seen in pancreatic and AR42J tumor cells. They can further be confirmed in vitro in human embryonic kidney-sst(2) cells, with an immunofluorescence microscopy-based sst(2) internalization assay. CONCLUSION: These animal data strongly indicate that the process of in vivo sst(2) internalization after agonist stimulation is fast, extremely efficient, and fully functional under in vivo conditions in neoplastic and physiologic sst(2) target tissues. This molecular process is, therefore, likely to be responsible for the high and long-lasting uptake of sst(2) radioligands seen in vivo in sst(2)-expressing tumors.
Resumo:
The successful treatment of primary and secondary bone tumors in a huge number of cases remains one of the major unsolved challenges in modern medicine. Malignant primary bone tumor growth predominantly occurs in younger people, whereas older people predominantly suffer from secondary bone tumors since up to 85% of the most frequently occurring malignant solid tumors, such as lung, mammary, and prostate carcinomas, metastasize into the bone. It is well known that a tumor's course may be altered by its surrounding tissue. For this reason, reported here is the protocol for the surgical preparation of a cranial bone window in mice as well as the method to implant tumors in this bone window for further investigations of angiogenesis and other microcirculatory parameters in orthotopically growing primary or secondary bone tumors using intravital microscopy. Intravital microscopy represents an internationally accepted and sophisticated experimental method to study angiogenesis, microcirculation, and many other parameters in a wide variety of neoplastic and nonneoplastic tissues. Since most physiologic and pathophysiologic processes are active and dynamic events, one of the major strengths of chronic animal models using intravital microscopy is the possibility of monitoring the regions of interest in vivo continuously up to several weeks with high spatial and temporal resolution. In addition, after the termination of experiments, tissue samples can be excised easily and further examined by various in vitro methods such as histology, immunohistochemistry, and molecular biology.
Resumo:
INTRODUCTION: Angiogenesis is known to be a critical and closely regulated step during bone formation and fracture healing driven by a complex interaction of various cytokines. Delays in bone healing or even nonunion might therefore be associated with altered concentrations of specific angiogenic factors. These alterations might in turn be reflected by changes in serum concentrations. METHOD: To determine physiological time courses of angiogenic cytokines during fracture healing as well as possible changes associated with failed consolidation, we prospectively collected serum samples from patients who had sustained surgical treatment for a long bone fracture. Fifteen patients without fracture healing 4 months after surgery (nonunion group) were matched to a collective of 15 patients with successful healing (union group). Serum concentrations of angiogenin (ANG), angiopoietin 2 (Ang-2), basic fibroblast growth factor (bFGF), platelet derived growth factor AB (PDGF-AB), pleiotrophin (PTN) and vascular endothelial growth factor (VEGF) were measured using enzyme linked immunosorbent assays over a period of 24 weeks. RESULTS: Compared to reference values of healthy uninjured controls serum concentrations of VEGF, bFGF and PDGF were increased in both groups. Peak concentrations of these cytokines were reached during early fracture healing. Serum concentrations of bFGF and PDGF-AB were significantly higher in the union group at 2 and 4 weeks after the injury when compared to the nonunion group. Serum concentrations of ANG and Ang-2 declined steadily from the first measurement in normal healing fractures, while no significant changes over time could be detected for serum concentrations of these factures in nonunion patients. PTN serum levels increased asymptotically over the entire investigation in timely fracture healing while no such increase could be detected during delayed healing. CONCLUSION: We conclude that fracture healing in human subjects is accompanied by distinct changes in systemic levels of specific angiogenic factors. Significant alterations of these physiologic changes in patients developing a fracture nonunion over time could be detected as early as 2 (bFGF) and 4 weeks (PDGF-AB) after initial trauma surgery.
Resumo:
Apoptosis, the most common form of cell death, is a key mechanism in the build up and maintenance of both innate and adaptive immunity. Central to the apoptotic process is a family of intracellular cysteine proteases with aspartate-specificity, called caspases. Caspases are counter-regulated by multiple anti-apoptotic molecules, and the expression of the latter in leukocytes is largely dependent on survival factors. Therefore, the physiologic rates of apoptosis change under pathologic conditions. For instance, in inflammation, the expression of survival factors is usually elevated, resulting in increased cell survival and consequently in the accumulation of the involved immune cells. In many allergic diseases, eosinophil apoptosis is delayed contributing to both blood and tissue eosinophilia. Besides eosinophils, apoptosis of other leukocytes is also frequently prevented or delayed during allergic inflammatory processes. In contrast to inflammatory cells, accelerated cell death is often observed in epithelial cells, a mechanism, which amplifies or at least maintains allergic inflammation. In conclusion, deregulated cell death is a common phenomenon of allergic diseases that likely plays an important role in their pathogenesis. Whether the apoptosis is too little or too much depends on the cell type. In this review, we discuss the regulation of the lifespan of the participating leukocytes in allergic inflammatory responses.