958 resultados para COUPLED-WAVE ANALYSIS
Resumo:
The presence of a proton-coupled electrogenic high-affinity peptide transporter in the apical membrane of tubular cells has been demonstrated by microperfusion studies and by use of brush border membrane vesicles. The transporter mediates tubular uptake of filtered di- and tripeptides and aminocephalosporin antibiotics. We have used expression cloning in Xenopus laevis oocytes for identification and characterization of the renal high-affinity peptide transporter. Injection of poly(A)+ RNA isolated from rabbit kidney cortex into oocytes resulted in expression of a pH-dependent transport activity for the aminocephalosporin antibiotic cefadroxil. After size fractionation of poly(A)+ RNA the transport activity was identified in the 3.0- to 5.0-kb fractions, which were used for construction of a cDNA library. The library was screened for expression of cefadroxil transport after injection of complementary RNA synthesized in vitro from different pools of clones. A single clone (rPepT2) was isolated that stimulated cefadroxil uptake into oocytes approximately 70-fold at a pH of 6.0. Kinetic analysis of cefadroxil uptake expressed by the transporter's complementary RNA showed a single saturable high-affinity transport system shared by dipeptides, tripeptides, and selected amino-beta-lactam antibiotics. Electrophysiological studies established that the transport activity is electrogenic and affected by membrane potential. Sequencing of the cDNA predicts a protein of 729 amino acids with 12 membrane-spanning domains. Although there is a significant amino acid sequence identity (47%) to the recently cloned peptide transporters from rabbit and human small intestine, the renal transporter shows distinct structural and functional differences.
Resumo:
We investigated whether mutations in the p53 tumor suppressor gene alter UV sensitivity and/or repair of UV-induced DNA damage in primary human skin fibroblasts from patients with Li-Fraumeni syndrome, heterozygous for mutations in one allele of the p53 gene (p53 wt/mut) and sublines expressing only mutant p53 (p53 mut). The p53 mut cells were more resistant than the p53 wt/mut cells to UV cytotoxicity and exhibited less UV-induced apoptosis. DNA repair analysis revealed reduced removal of cyclobutane pyrimidine dimers from overall genomic DNA in vivo in p53 mut cells compared with p53 wt/mut or normal cells. However, p53 mut cells retained the ability to preferentially repair damage in the transcribed strands of expressed genes (transcription-coupled repair). These results suggest that loss of p53 function may lead to greater genomic instability by reducing the efficiency of DNA repair but that cellular resistance to DNA-damaging agents may be enhanced through elimination of apoptosis.
Resumo:
Phosphorylation of G-protein-coupled receptors plays an important role in regulating their function. In this study the G-protein-coupled receptor phosphatase (GRP) capable of dephosphorylating G-protein-coupled receptor kinase-phosphorylated receptors is described. The GRP activity of bovine brain is a latent oligomeric form of protein phosphatase type 2A (PP-2A) exclusively associated with the particulate fraction. GRP activity is observed only when assayed in the presence of protamine or when phosphatase-containing fractions are subjected to freeze/thaw treatment under reducing conditions. Consistent with its identification as a member of the PP-2A family, the GRP is potently inhibited by okadaic acid but not by I-2, the specific inhibitor of protein phosphatase type 1. Solubilization of the membrane-associated GRP followed by gel filtration in the absence of detergent yields a 150-kDa peak of latent receptor phosphatase activity. Western blot analysis of this phosphatase reveals a likely subunit composition of AB alpha C. PP-2A of this subunit composition has previously been characterized as a soluble enzyme, yet negligible soluble GRP activity was observed. The subcellular distribution and substrate specificity of the GRP suggests significant differences between it and previously characterized forms of PP-2A.
Resumo:
c-Mpl, a member of the hematopoietic cytokine receptor family, is the receptor for thrombopoietin. To investigate signal transduction by c-Mpl, a chimeric receptor, composed of the extracellular domain of human growth hormone receptor and the intracellular domain of c-Mpl, was introduced into the interleukin 3-dependent cell line Ba/F3. In response to growth hormone, this chimeric receptor induced growth in the absence of interleukin 3. Deletion analysis of the 123-amino acid intracellular domain indicated that the elements responsible for this effect are present within the 63 amino acids proximal to the transmembrane domain. Mutation of the recently described box 1 motif abrogated the proliferative response. Tyrosine phosphorylation of the tyrosine kinase JAK-2 and activation of STAT proteins were dependent on box 1 and sequences within 63 amino acids of the plasma membrane. STAT proteins activated by thrombopoietin in a megakaryocytic cell line were purified and shown to be STAT1 and STAT3. A separate region located at the C terminus of the c-Mpl intracellular domain was found to be required for induction of Shc phosphorylation and c-fos mRNA accumulation, suggesting involvement of the Ras signal transduction pathway. Thus, at least two distinct regions are involved in signal transduction by the c-Mpl.
Resumo:
One of the main technical difficulties in the fabrication of optical antennas working as light detectors is the proper design and manufacture of auxiliary elements as load lines and signal extraction structures. These elements need to be quite small to reach the location of the antennas and should have a minimal effect on the response of the device. Unfortunately this is not an easy task and signal extraction lines resonate along with the antenna producing a complex signal that usually masks the one given by the antenna. In order to decouple the resonance from the transduction we present in this contribution a parametric analysis of the response of a bolometric stripe that is surrounded by resonant dipoles with different geometries and orientations. We have checked that these elements should provide a signal proportional to the polarization state of the incoming light.
Resumo:
Studies addressing climate variability during the last millennium generally focus on variables with a direct influence on climate variability, like the fast thermal response to varying radiative forcing, or the large-scale changes in atmospheric dynamics (e. g. North Atlantic Oscillation). The ocean responds to these variations by slowly integrating in depth the upper heat flux changes, thus producing a delayed influence on ocean heat content (OHC) that can later impact low frequency SST (sea surface temperature) variability through reemergence processes. In this study, both the externally and internally driven variations of the OHC during the last millennium are investigated using a set of fully coupled simulations with the ECHO-G (coupled climate model ECHAMA4 and ocean model HOPE-G) atmosphere-ocean general circulation model (AOGCM). When compared to observations for the last 55 yr, the model tends to overestimate the global trends and underestimate the decadal OHC variability. Extending the analysis back to the last one thousand years, the main impact of the radiative forcing is an OHC increase at high latitudes, explained to some extent by a reduction in cloud cover and the subsequent increase of short-wave radiation at the surface. This OHC response is dominated by the effect of volcanism in the preindustrial era, and by the fast increase of GHGs during the last 150 yr. Likewise, salient impacts from internal climate variability are observed at regional scales. For instance, upper temperature in the equatorial Pacific is controlled by ENSO (El Nino Southern Oscillation) variability from interannual to multidecadal timescales. Also, both the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO) modulate intermittently the interdecadal OHC variability in the North Pacific and Mid Atlantic, respectively. The NAO, through its influence on North Atlantic surface heat fluxes and convection, also plays an important role on the OHC at multiple timescales, leading first to a cooling in the Labrador and Irminger seas, and later on to a North Atlantic warming, associated with a delayed impact on the AMO.
Resumo:
The Vernacular Discourse of the "Arab Spring" is a project that bridges the divide between the East and the West by offering new readings to Arab subjectivities. Through an analysis of the "Arab Spring" through the lens of vernacular discourse, it challenges the Euro-Americo-centric legacies of Orientalism in Western academia and the new wave of extremism in the Arab world by offering alternative representations of Arab bodies and subjectivities. To offer this new reading of the "Arab Spring," it explores the foundations of critical rhetoric as a theory and a practice and argues for a turn towards a critical vernacular discourse. The turn towards critical vernacular discourse is important as it urges the analyses of different artifacts produced by marginalized groups in order to understand their perspectives that have largely been foreclosed in traditional cultural studies research. Building on embodied/performative critical rhetoric, the vernacular discourses of the Arab revolutionary body examines other forms of knowledge productions that are not merely textual; more specifically, through data gathered in the Lhbib Bourguiba, Tunisia. This analysis of the political revolutionary body unveils the complexity underlining the discussion around issues of identity, agency and representation in the Middle East and North Africa, and calls for a critical study towards these issues in the region beyond the binary approach that has been practiced and applied by academics and media analysts. Hence, by analyzing vernacular discourse, this research locates a method of examining and theorizing the dialectic between agency, citizenry, and subjectivity through the study of how power structure is recreated and challenged through the use of the vernacular in revolutionary movements, as well as how marginalized groups construct their own subjectivities through the use of vernacular discourse. Therefore, highlighting the political prominence of evaluating the Arab Spring as a vernacular discourse is important in creating new ways of understanding communication in postcolonial/neocolonial settings.
Resumo:
In the first wave, behaviorists questioned the conventional wisdom that inner experience was relevant to understanding human behavior. In the 1970s, cognitive-behavioral theories emphasized the importance of the cognitive element, not just the environment, in explaining and modifying behavior. The third wave is drawn from advances in basic and applied behavior analysis of language, Eastern mystical traditions, and less empirically oriented therapeutic approaches. Examples include Acceptance and Commitment Therapy (ACT), Dialectical Behavior Therapy (DBT), Functional Analytic Psychotherapy (FAP), and Mindfulness Based Cognitive Therapy (IBCT). This study reports a survey of clinicians and non-clinicians who self-identify with second or third wave approaches, and a group of undergraduate psychology students intended to represent a layperson or folk psychological approach. Their preferences, in the context of 10 clinical vignettes, among 5 different therapeutic responses or interventions that included "ACT-like," "cognitive," and commonsense or "neutral" options were measured. Third wave-oriented respondents exhibited more consistency than others in their preference for interventions that match their self-identified theoretical orientation, however the author suggests that construction of the vignettes may have influenced this result.
Resumo:
This correspondence presents an efficient method for reconstructing a band-limited signal in the discrete domain from its crossings with a sine wave. The method makes it possible to design A/D converters that only deliver the crossing timings, which are then used to interpolate the input signal at arbitrary instants. Potentially, it may allow for reductions in power consumption and complexity in these converters. The reconstruction in the discrete domain is based on a recently-proposed modification of the Lagrange interpolator, which is readily implementable with linear complexity and efficiently, given that it re-uses known schemes for variable fractional-delay (VFD) filters. As a spin-off, the method allows one to perform spectral analysis from sine wave crossings with the complexity of the FFT. Finally, the results in the correspondence are validated in several numerical examples.
Resumo:
Thermal degradation of PLA is a complex process since it comprises many simultaneous reactions. The use of analytical techniques, such as differential scanning calorimetry (DSC) and thermogravimetry (TGA), yields useful information but a more sensitive analytical technique would be necessary to identify and quantify the PLA degradation products. In this work the thermal degradation of PLA at high temperatures was studied by using a pyrolyzer coupled to a gas chromatograph with mass spectrometry detection (Py-GC/MS). Pyrolysis conditions (temperature and time) were optimized in order to obtain an adequate chromatographic separation of the compounds formed during heating. The best resolution of chromatographic peaks was obtained by pyrolyzing the material from room temperature to 600 °C during 0.5 s. These conditions allowed identifying and quantifying the major compounds produced during the PLA thermal degradation in inert atmosphere. The strategy followed to select these operation parameters was by using sequential pyrolysis based on the adaptation of mathematical models. By application of this strategy it was demonstrated that PLA is degraded at high temperatures by following a non-linear behaviour. The application of logistic and Boltzmann models leads to good fittings to the experimental results, despite the Boltzmann model provided the best approach to calculate the time at which 50% of PLA was degraded. In conclusion, the Boltzmann method can be applied as a tool for simulating the PLA thermal degradation.
Resumo:
We carry out a seismic noise study based on array measurements at three sites in the Málaga basin, South Spain, for the further estimation of shear wave velocity profiles. For this purpose, we use both the H/V method and the f–k technique in order to characterize the different materials present in the zone, i.e., Quaternary sediments and Pliocene sedimentary rocks above the bedrock. The H/V analysis shows frequency peaks going from 1 Hz, in areas close to the border of the basin, to 0.3 Hz in places located toward the center of the formation. The f–k analysis allows obtaining the dispersion curves associated with each site and subsequently, estimating the Vs profiles by inversion of the respective group velocities. In this way, the basin basement can be characterized by S-wave velocities greater than 2000 m/s. Regarding the basin fill, it is divided into three layers defined by different wave velocity intervals. The shallowest one is featured by velocities ranging from 150 to 400 m/s and comprises the Quaternary sediments, while velocities going from 550–700 to1200–1600 m/s characterize the two underlying layers composed by Pliocene sediments. Finally, the information provided by the three Vs profiles is integrated in a 2D cross-section of the basin to have a spatial view of its sedimentary structure. The results obtained here, in addition to providing useful information about the infill of the basin near the metropolitan area of Málaga, will be very helpful for future seismic zonation studies in the region.
Resumo:
Light confinement and controlling an optical field has numerous applications in the field of telecommunications for optical signals processing. When the wavelength of the electromagnetic field is on the order of the period of a photonic microstructure, the field undergoes reflection, refraction, and coherent scattering. This produces photonic bandgaps, forbidden frequency regions or spectral stop bands where light cannot exist. Dielectric perturbations that break the perfect periodicity of these structures produce what is analogous to an impurity state in the bandgap of a semiconductor. The defect modes that exist at discrete frequencies within the photonic bandgap are spatially localized about the cavity-defects in the photonic crystal. In this thesis the properties of two tight-binding approximations (TBAs) are investigated in one-dimensional and two-dimensional coupled-cavity photonic crystal structures We require an efficient and simple approach that ensures the continuity of the electromagnetic field across dielectric interfaces in complex structures. In this thesis we develop \textrm{E} -- and \textrm{D} --TBAs to calculate the modes in finite 1D and 2D two-defect coupled-cavity photonic crystal structures. In the \textrm{E} -- and \textrm{D} --TBAs we expand the coupled-cavity \overrightarrow{E} --modes in terms of the individual \overrightarrow{E} -- and \overrightarrow{D} --modes, respectively. We investigate the dependence of the defect modes, their frequencies and quality factors on the relative placement of the defects in the photonic crystal structures. We then elucidate the differences between the two TBA formulations, and describe the conditions under which these formulations may be more robust when encountering a dielectric perturbation. Our 1D analysis showed that the 1D modes were sensitive to the structure geometry. The antisymmetric \textrm{D} mode amplitudes show that the \textrm{D} --TBA did not capture the correct (tangential \overrightarrow{E} --field) boundary conditions. However, the \textrm{D} --TBA did not yield significantly poorer results compared to the \textrm{E} --TBA. Our 2D analysis reveals that the \textrm{E} -- and \textrm{D} --TBAs produced nearly identical mode profiles for every structure. Plots of the relative difference between the \textrm{E} and \textrm{D} mode amplitudes show that the \textrm{D} --TBA did capture the correct (normal \overrightarrow{E} --field) boundary conditions. We found that the 2D TBA CC mode calculations were 125-150 times faster than an FDTD calculation for the same two-defect PCS. Notwithstanding this efficiency, the appropriateness of either TBA was found to depend on the geometry of the structure and the mode(s), i.e. whether or not the mode has a large normal or tangential component.
Resumo:
Ferrosilite-fayalite bearing charnockite and biotite-hornblende bearing granite are exposed in Mühling-Hofmannfjella, central Dronning Maud Land of East Antarctica. Both are interpreted as essentially parts of a single pluton in spite of their contrasting mineral assemblages. Based on petrologic and geochemical studies, it is proposed that H2O-undersaturated parent magma with igneous crustal component that fractionated under different oxygen fugacity conditions resulted in the Mühlig-Hofmannfjella granitoids.