985 resultados para CONTRAST AGENTS
Resumo:
Climate model simulations consistently show that surface temperature over land increases more rapidly than over sea in response to greenhouse gas forcing. The enhanced warming over land is not simply a transient effect caused by the land–sea contrast in heat capacities, since it is also present in equilibrium conditions. This paper elucidates the transient adjustment processes over time scales of days to weeks of the surface and tropospheric climate in response to a doubling of CO2 and to changes in sea surface temperature (SST), imposed separately and together, using ensembles of experiments with an atmospheric general circulation model. These adjustment processes can be grouped into three stages: immediate response of the troposphere and surface processes (day 1), fast adjustment of surface processes (days 2–5), and adjustment of the whole troposphere (days 6–20). Some land surface warming in response to doubled CO2 (with unchanged SSTs) occurs immediately because of increased downward longwave radiation. Increased CO2 also leads to reduced plant stomatal resistance and hence restricted evaporation, which increases land surface warming in the first day. Rapid reductions in cloud amount lead in the next few days to increased downward shortwave radiation and further warming, which spreads upward from the surface, and by day 5 the surface and tropospheric response is statistically consistent with the equilibrium value. Land surface warming in response to imposed SST change (with unchanged CO2) is slower. Tropospheric warming is advected inland from the sea, and over land it occurs at all levels together rather than spreading upward from the surface. The atmospheric response to prescribed SST change in about 20 days is statistically consistent with the equilibrium value, and the warming is largest in the upper troposphere over both land and sea. The land surface warming involves reduction of cloud cover and increased downward shortwave radiation, as in the experiment with CO2 change, but in this case it is due to the restriction of moisture supply to the land (indicated by reduced soil moisture), whereas in the CO2 forcing experiment it is due to restricted evaporation despite increased moisture supply (indicated by increased soil moisture). The warming over land in response to SST change is greater than over the sea and is the dominant contribution to the land–sea warming contrast under enhanced CO2 forcing.
Resumo:
A surface forcing response framework is developed that enables an understanding of time-dependent climate change from a surface energy perspective. The framework allows the separation of fast responses that are unassociated with global-mean surface air temperature change (ΔT), which is included in the forcing, and slow feedbacks that scale with ΔT. The framework is illustrated primarily using 2 × CO2 climate model experiments and is robust across the models. For CO2 increases, the positive downward radiative component of forcing is smaller at the surface than at the tropopause, and so a rapid reduction in the upward surface latent heat (LH) flux is induced to conserve the tropospheric heat budget; this reduces the precipitation rate. Analysis of the time-dependent surface energy balance over sea and land separately reveals that land areas rapidly regain energy balance, and significant land surface warming occurs before global sea temperatures respond. The 2 × CO2 results are compared to a solar increase experiment and show that some fast responses are forcing dependent. In particular, a significant forcing from the fast hydrological response found in the CO2 experiments is much smaller in the solar experiment. The different fast response explains why previous equilibrium studies found differences in the hydrological sensitivity between these two forcings. On longer time scales, as ΔT increases, the net surface longwave and LH fluxes provide positive and negative surface feedbacks, respectively, while the net surface shortwave and sensible heat fluxes change little. It is found that in contrast to their fast responses, the longer-term response of both surface energy fluxes and the global hydrological cycle are similar for the different forcing agents.
Resumo:
Understanding and predicting changes in storm tracks over longer time scales is a challenging problem, particularly in the North Atlantic. This is due in part to the complex range of forcings (land–sea contrast, orography, sea surface temperatures, etc.) that combine to produce the structure of the storm track. The impact of land–sea contrast and midlatitude orography on the North Atlantic storm track is investigated through a hierarchy of GCM simulations using idealized and “semirealistic” boundary conditions in a high-resolution version of the Hadley Centre atmosphere model (HadAM3). This framework captures the large-scale essence of features such as the North and South American continents, Eurasia, and the Rocky Mountains, enabling the results to be applied more directly to realistic modeling situations than was possible with previous idealized studies. The physical processes by which the forcing mechanisms impact the large-scale flow and the midlatitude storm tracks are discussed. The characteristics of the North American continent are found to be very important in generating the structure of the North Atlantic storm track. In particular, the southwest–northeast tilt in the upper tropospheric jet produced by southward deflection of the westerly flow incident on the Rocky Mountains leads to enhanced storm development along an axis close to that of the continent’s eastern coastline. The approximately triangular shape of North America also enables a cold pool of air to develop in the northeast, intensifying the surface temperature contrast across the eastern coastline, consistent with further enhancements of baroclinicity and storm growth along the same axis.
Resumo:
It has been suggested that higher in-group identifiers primed with an out-group stereotype show contrastive behavioral responses because they activate the in-group, social-self. However, priming the personal-self can lead to contrastive judgments. We investigated whether personal self-activation was also evident for higher identifiers primed with an out-group. An experiment demonstrated that higher identifiers primed with an out-group showed faster responses to self-words than higher identifiers primed with the in-group. This findings suggest that the personal-self is also activated for higher identifiers primed with an out-group, and this self-activation may underlie their contrastive responding.
Resumo:
Endorsed by the Society of Light and Lighting, this practical book offers comprehensive guidance on how colour, light and contrast can be incorporated within buildings to enhance their usability. The book provides state-of-the-art, clear guidance as well as a valuable information source for busy professionals involved in the design or management of new and existing environments. The ways colour, light and contrast are used within built environments are critical in determining how people interact with the space, and how confident, safe, and secure they will feel when doing so. They also have a major influence on a person’s sense of well-being and their ability to use the environment independently and without undue effort. Understanding how to use colour and contrast and how they are influenced by both natural and artificial lighting is vital for all those involved in the design and management of the environments and spaces we all use. In recent years there has been a considerable amount of work undertaken to further our understanding of how colour, light and contrast affect emotion and sensory abilities, and how they can assist or hinder people in their everyday lives. Other publications consider these issues individually but The Colour, Light and Contrast Manual: designing and managing inclusive built environments draws knowledge and information together to produce a unique, comprehensive and informative guide to how the three elements can work together to improve the design and management of environments for us all.
Resumo:
An isolate of Gliocladium virens from disease affected soil in a commercial tomato greenhouse proved highly antagonistic to Fusarium oxysporum f.sp. lycopersici, used together with an isolate of the nematophagus fungus Verticillium chlamydosporium. Significant disease control was obtained when young mycelial preparation (on a food-base culture) of the G. virens together with V. chlamydosporium was applied in potting medium. Similar results were observed when a Trichoderma harzianum isolate was treated in combination with the V. chlamydosporium isolate. Most promising, in terms of minimizing the Fusarium wilt of tomato incidence, was also the effect of the bacteria associated with entomopathogenic nematodes (Steinernema spp.), Pseudomonas oryzihabitans and Xenorhabdus nematophilus.
Resumo:
The capacity of the surface glycoproteins of enveloped viruses to mediate virus/cell binding and membrane fusion requires a proper thiol/disulfide balance. Chemical manipulation of their redox state using reducing agents or free sulfhydryl reagents affects virus/cell interaction. Conversely, natural thiol/disulfide rearrangements often occur during the cell interaction to trigger fusogenicity, hence the virus entry. We examined the relationship between the redox state of the 20 cysteine residues of the SARS-CoV (severe acute respiratory syndrome coronavirus) Spike glycoprotein S1 subdomain and its functional properties. Mature S1 exhibited similar to 4 unpaired cysteines, and chemically reduced S1 displaying up to similar to 6 additional unpaired cysteines still bound ACE2 and enabled fusion. In addition, virus/cell membrane fusion occurred in the presence of sulfhydryl-blocking reagents and oxidoreductase inhibitors. Thus, in contrast to various viruses including HIV (human immunodeficiency virus) examined in parallel, the functions of the SARS-CoV Spike glycoprotein exhibit a significant and surprising independence of redox state, which may contribute to the wide host range of the virus. These data suggest clues for molecularly engineering vaccine immunogens.
Resumo:
Acridine-4-carboxamides form a class of known DNA mono-intercalating agents that exhibit cytotoxic activity against tumour cell lines due to their ability to inhibit topoisomerases. Previous studies of bis-acridine derivatives have yielded equivocal results regarding the minimum length of linker necessary between the two acridine chromophores to allow bis-intercalation of duplex DNA. We report here the 1.7 angstrom resolution X-ray crystal structure of a six-carbon-linked bis(acridine-4-carboxamide) ligand bound to d(CGTACG)(2) molecules by non-covalent duplex cross-linking. The asymmetric unit consists of one DNA duplex containing an intercalated acridine-4-carboxamide chromophore at each of the two CG steps. The other half of each ligand is bound to another DNA molecule in a symmetry-related manner, with the alkyl linker threading through the minor grooves. The two crystallographically independent ligand molecules adopt distinct side chain interactions, forming hydrogen bonds to either O6 or N7 on the major groove face of guanine, in contrast to the semi-disordered state of mono-intercalators bound to the same DNA molecule. The complex described here provides the first structural evidence for the non-covalent cross-linking of DNA by a small molecule ligand and suggests a possible explanation for the inconsistent behaviour of six-carbon linked bis-acridines in previous assays of DNA bis-intercalation.
Resumo:
Trans-1, [HNEt3][Co-III(L-Se)(2)]center dot H2O and cis-1, [HNEt3][Co-III(L-Se)(2)]center dot 3H(2)O have been synthesized and characterized by single-crystal X-ray studies. The counter ion Et3NH+ plays a crucial role in the crystal packing leading to the formation of two distinctly different supramolecular assemblies in the two complexes. In trans-1, Co-bisphenolate units and triethylamine molecules are arranged in a linear fashion leading to a supramolecular columnar assembly along the crystallographic a-axis. In this assembly, triethylammonium ions are sandwiched between successive Co-bisphenolate units and act as gluing agents joining Co-bisphenolate units on either side through C-H center dot center dot center dot pi interactions. In sharp contrast to trans-1, Co-bisphenolate units and triethylammonium ions in cis-1 are arranged in a helical supramolecular assembly through similar C-H center dot center dot center dot pi interactions along the crystallographic b-axis. The Se center dot center dot center dot Se van der Waals interactions may be responsible for the predominant occurrence of the cis-isomer. The cyclic voltammetric studies showed quasi-reversible waves for the cobalt(III) -> cobalt(II) reductions with E-1/2 = 0.635 and 0.628 V vs. Ag/AgCl for cis-1 (at similar to 5 degrees C) and trans-1 (at similar to 25 degrees C), respectively. DFT calculations show that the trans-form is the thermodynamic product with higher stability than the cis-one, which is consistent with the variable temperature H-1 NMR studies
Resumo:
A new family of antimony sulfides, incorporating the macrocyclic tetramine 1,4,8,11-tetraazacyclotetradecane ( cyclam), has been prepared by a hydrothermal method. [C10N4H26][Sb4S7] (1), [Ni(C10N4H24)][Sb4S7] (2), and [Co(C10N4H24)](x)[C10N4H26](1-x)[Sb4S7] (0.08 <= x <= 0.74) (3) have been characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetry, and analytical electron microscopy. All three materials possess the same novel three-dimensional Sb4S72- framework, constructed from layers of parallel arrays of Sb4S84- chains stacked at 90 to one another. In 1, doubly protonated macrocyclic cations reside in the channel structure of the antimonysulfide framework. In 2 and 3, the cyclam acts as a ligand, chelating the divalent transition- metal cation. Analytical and X-ray diffraction data indicate that the level of metal incorporation in 2 is effectively complete, whereas in 3, both metalated and nonmetalated forms of the macrocycle coexist within the structure.
Resumo:
Conducts a study into how contrast could be established when using colours frequently used in everyday environments, and how different adjacent colours had to be in terms of chromaticity, saturation and/or hue in order for a difference to be discerned between them by fully sighted people and most visually impaired people. Location within a building where contrast would have the greatest benefits is considered. Relates the philosophy behind design procedures and decisions to meet the objectives.