970 resultados para COBALT DISILICIDE
Resumo:
Hot brines in depressions of the central Red Sea contain thousands of times more iron, manganese and other metals than . After removal of salts, approximately half of sediments from these depressions consists of iron hydroxides and they are enriched in zinc, copper, lead and molybdenum. Hydrothermal deposits with the same complex of metals, located along the coast of the Red Sea, are correlated with faults and may be due to occurrences of Tertiary volcanism. Brines of similar composition are known in the Cheleken Peninsula. Certain geological and geochemical data indicate that such brines are of relatively deep origin.
Resumo:
In September-October 1998, during Cruise 14 of R/V Akademik Fedorov to the Barents Sea, in the region of 82° N between the Spitsbergen and Novaya Zemlya archipelagos samples of snow and ice were collected within four polygons. By means of atomic absorption with an electothermal atomizer (onboard the ship) in filtered (dissolved form) and unfiltered (sum of dissolved and particulate forms) samples of snow melt and ice melt concentrations of Fe, Mn, Cu, Cr, Ni, Co, Pb, and Cd were determined in order to estimate level of potential contamination of snow and ice with these metals. Excluding data on Ni, Cd (and probably Cu) in ice that were regarded to be unsatisfactory because of probable contamination of the ice samples during drilling concentrations of all the elements in snow and ice of the northern part of the Barents Sea appeared to be close to their background values or below. An attempt to identify the main sources of metal supply to snow from the atmosphere by comparison of ratios of metal particulate form to total content in snow of the Barents Sea and the same ratios in snow samples from clean regions of Finland and from contaminated areas of the Kola Peninsula showed that aerosols in the area of the expedition were supplied into the Barents Sea atmosphere from different sources, both natural and anthropogenic.
Resumo:
CO2 leakage from subsurface storage sites is one of the main concerns connected with the CCS technology. As CO2 leakages into near surface formations appear to be very unlikely within pilot CCS projects, the aim of this work is to emulate a leakage by injecting CO2 into a near surface aquifer. The two main questions pursued by the injection test are (1) to investigate the impact of CO2 on the hydrogeochemistry of the groundwater as a base for groundwater risk assessment and (2) to develop and apply monitoring methods and monitoring concepts for detecting CO2 leakages in shallow aquifers. The presented injection test is planned within the second half of 2010, as a joint project of the University of Kiel (Germany), the Helmholtz-Centre for Environmental Research (Leipzig, Germany) and the Engineering Company GICON (Dresden, Germany). The test site has been investigated in detail using geophysical methods as well as direct-push soundings, groundwater well installation and soil and groundwater analyses. The present paper presents briefly the geological and hydrogeological conditions at the test site as well as the planned injection test design and monitoring concept.