963 resultados para CHROMOSOMAL DEFECTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the magnetic properties of graphenic nanostructures is instrumental in future spintronics applications. These magnetic properties are known to depend crucially on the presence of defects. Here we review our recent theoretical studies using density functional calculations on two types of defects in carbon nanostructures: Substitutional doping with transition metals, and sp$^3$-type defects created by covalent functionalization with organic and inorganic molecules. We focus on such defects because they can be used to create and control magnetism in graphene-based materials. Our main results are summarized as follows: i)Substitutional metal impurities are fully understood using a model based on the hybridization between the $d$ states of the metal atom and the defect levels associated with an unreconstructed D$_{3h}$ carbon vacancy. We identify three different regimes, associated with the occupation of distinct hybridization levels, which determine the magnetic properties obtained with this type of doping; ii) A spin moment of 1.0 $\mu_B$ is always induced by chemical functionalization when a molecule chemisorbs on a graphene layer via a single C-C (or other weakly polar) covalent bond. The magnetic coupling between adsorbates shows a key dependence on the sublattice adsorption site. This effect is similar to that of H adsorption, however, with universal character; iii) The spin moment of substitutional metal impurities can be controlled using strain. In particular, we show that although Ni substitutionals are non-magnetic in flat and unstrained graphene, the magnetism of these defects can be activated by applying either uniaxial strain or curvature to the graphene layer. All these results provide key information about formation and control of defect-induced magnetism in graphene and related materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comprehensive study based on first-principles calculations about the interplay of four important ingredients on the electronic structure of graphene: defects + magnetism + ripples + strain. So far they have not been taken into account simultaneously in a set of ab initio calculations. Furthermore, we focus on the strain dependence of the properties of carbon monovacancies, with special attention to magnetic spin moments. We demonstrated that such defects show a very rich structural and spin phase-diagram with many spin solutions as function of strain. At zero strain the vacancy shows a spin moment of 1.5 Bohrs that increases up to 2 Bohrs with stretching. Changes are more dramatic under compression: the vacancy becomes non-magnetic under a compression larger than 2%. This transition is linked to the structural modifications associated with the formation of ripples in the graphene layer. Our results suggest that such interplay could have important implications for the design of future spintronics devices based on graphene derivatives, as for example a spin-strain switch based on vacancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with syndromic features frequently suffer from recurrent respiratory infections, but little is known about the spectrum of immunological abnormalities associated with their underlying chromosomal aberrations outside the well-known examples of Down and DiGeorge syndromes. Therefore, we performed this retrospective, observational survey study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Une caractéristique intéressante de la protéine Bcl-xL est la présence d'un domaine en boucle non-structurée entre les hélices α1 and α2 de la protéine. Ce domaine protéique n'est pas essentiel pour sa fonction anti-apoptotique et absent chez CED-9, la protéine orthologue chez Caenorhabditis elegans. A l'intérieur de ce domaine, Bcl-xL subit une phosphorylation et déphosphorylation dynamique sur les résidus Ser49 et Ser62 en phase G2 du cycle cellulaire et lors de la mitose. Lorsque ces résidus sont mutés et les protéines exprimées dans des cellules cancéreuses, les cellules démontrent plusieurs défauts mitotiques liés à l'instabilité chromosomique. Pour analyser les effets de Bcl-xL Ser49 et Ser62 dans les cellules normales, les présentes études ont été réalisées dans des cellules diploïdes humaines normales, et in vivo chez Caenorhabditis elegans. Dans une première étude, nous avons utilisé la lignée cellulaire de cellules fibroblastiques diploïdes humaines normales BJ, exprimant Bcl-xL (type sauvage), (S49A), (S49D), (S62A), (S62D) et les double (S49/62A) et (S49/62D) mutants. Les cellules exprimant les mutants de phosphorylation ont montré des cinétiques de doublement de la population cellulaire réduites. Ces effets sur la cinétique de doublement de la population cellulaire corrèle avec l'apparition de la sénescence cellulaire, sans impact sur les taux de mort cellulaire. Ces cellules sénescentes affichent des phénotypes typiques de sénescence associés notamment à haut niveau de l'activité β-galactosidase associée à la sénescence, la sécrétion d' interleukine-6, l'activation de p53 et de p21WAF1/ Cip1, un inhibiteur des complexes kinase cycline-dépendant, ainsi que la formation de foyers de chromatine nucléaire associés à γH2A.X. Les analyses de fluorescence par hybridation in situ et des caryotypes par coloration au Giemsa ont révélé que l'expression des mutants de phosphorylation de Bcl-xL provoquent de l'instabilité chromosomique et l'aneuploïdie. Ces résultats suggèrent que les cycles de phosphorylation et déphosphorylation dynamiques de Bcl-xL Ser49 et Ser62 sont importants dans le maintien de l'intégrité des chromosomes lors de la mitose dans les cellules normales. Dans une deuxième étude, nous avons entrepris des expériences chez Caenorhabditis elegans pour comprendre l'importance des résidus Ser49 et Ser62 de Bcl-xL in vivo. Les vers transgéniques portant les mutations de Bcl-xL (S49A, S62A, S49D, S62D et S49/62A) ont été générés et leurs effets ont été analysés sur les cellules germinales des jeunes vers adultes. Les vers portant les mutations de Bcl-xL ont montré une diminution de ponte et d'éclosion des oeufs, des variations de la longueur de leurs régions mitotiques et des zones de transition, des anomalies chromosomiques à leur stade de diplotène, et une augmentation de l'apoptose des cellules germinales. Certaines de ces souches transgéniques, en particulier les variants Ser/Ala, ont également montré des variations de durée de vie par rapport aux vers témoins. Ces observations in vivo ont confirmé l'importance de Ser49 et Ser62 à l'intérieur du domaine à boucle de Bcl-xL pour le maintien de la stabilité chromosomique. Ces études auront une incidence sur les futures stratégies visant à développer et à identifier des composés qui pourraient cibler non seulement le domaine anti-apoptotique de la protéine Bcl-xL, mais aussi son domaine mitotique pour la thérapie du cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we showthatthe adherens junction proteins afadin and CDH2 are criticalforthe control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telenceph-alon leads to a phenotype resembling subcortical band heterotopia, also known as “double cortex,” a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract not available

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract for 24th Biennial Congress of the European Association for Cancer Research, 9–12 July 2016, Manchester, UK. Poster Session: Cancer Genomics, Epigenetics and Genome Instability II: Monday 11 July 2016

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract not available

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder caused by defects in one of several steroidogenic enzymes involved in the synthesis of cortisol from cholesterol in the adrenal glands. More than 90% of cases are caused by 21-hydroxylase deficiency, and the severity of the resulting clinical symptoms varies according to the level of 21-hydroxylase activity. 21-Hydroxylase deficiency is usually caused by mutations in the CYP21A2 gene, which is located on the RCCX module, a chromosomal region highly prone to genetic recombination events that can result in a wide variety of complex rearrangements, such as gene duplications, gross deletions and gene conversions of variable extensions. Molecular genotyping of CYP21A2 and the RCCX module has proved useful for a more accurate diagnosis of the disease, and prenatal diagnosis. This article summarises the clinical features of 21-hydroxylase deficiency, explains current understanding of the disease at the molecular level, and highlights recent developments, particularly in diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial fatty acid oxidation (FAO) plays a pivotal role in energy homeostasis, namely during periods of fasting or metabolic stress. FAO defects are a group of inherited metabolic disorders that encompass at least twelve distinct enzyme or transporter deficiencies, and can present with a wide range of clinical symptoms with various degrees of severity. Besides recent advances, many doubts still remain on the degree and characteristics of mitochondrial dysfunction on FAOD and its contribution to the clinical phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis demonstrates exciton engineering in semiconducting single-walled carbon nanotubes through tunable fluorescent quantum defects. By introducing different functional moieties on the sp2 lattice of carbon nanotubes, the nanotube photoluminescence is systematically tuned over 68 meV in the second near-infrared window. This new class of quantum emitters is enabled by a new chemistry that allows covalent attachment of alkyl/aryl functional groups from their iodide precursors in aqueous solution. Using aminoaryl quantum defects, we show that the pH and temperature of complex fluids can be optically measured through defect photoluminescence that encodes the local environment information. Furthermore, defect-bound trions, which are electron-hole-electron tri-carrier quasi-particles, are observed in alkylated single-walled carbon nanotubes at room temperature with surprisingly high photoluminescence brightness. Collectively, the emission from defect-bound excitons and trions in (6,5)-single walled carbon nanotubes is 18-fold brighter than that of the native exciton. These findings pave the way to chemical tailoring of the electronic and optical properties of carbon nanostructures with fluorescent quantum defects and may find applications in optoelectronics and bioimaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automated fibre placement (AFP) enables the trajectory of unidirectional composite tape to be optimized, but laying down complex shapes with this technology can result in the introduction of defects. The aim of this experimental study is to investigate the influence of gaps and overlaps on the microstructure and tensile properties of carbon-epoxy laminates. First, a comparison between a hand-layup and AFP layup, draped and cured under the same conditions, shows equivalent microstructures and tensile properties. This provides the reference values for the study. Then, gap and overlap embedded defects (more or less severe) are introduced during manufacturing, on two cross-ply layups [(0°/(90°)5/0°] and [(90°/0°)2/90°]. Autoclave cure without a caul plate results in local thickness variation and microstructural changes which depend on the defect type. This has a strong influence on mechanical performance. Use of a caul plate avoids these variations and in this case embedded defects hardly affect tensile properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In Portugal folic acid supplementation is recommended to start at least 2-3 months before conception for primary prevention of Neural Tube Defects. The aim of this study was to evaluate, within gestations with at least one congenital anomaly, possible association between maternal socio-demographic factors and the use of folic acid. Methods: Using data from the Portuguese national registry of congenital anomalies, for the 2004-2013 period, the association between folic acid use during pregnancy and maternal characteristics was studied using the chi-square test. Results: Considering all reported cases with congenital anomaly, the use of folic acid before conception was reported by 12.7% (n = 1233) of the women; 47.8% (n = 4623) started supplementation during the 1st trimester, 7% (n = 680) did not take folic acid and 32.5% (3143) of the records had no information on folic acid use. Women with professions that require higher academic differentiation started the use of supplements before pregnancy (p <0.001); women under 19 years old and with Arab ethnicity (p <0.001) did not take folic acid. Mothers with a previous pregnancy reported less use of folic acid (11.5% versus 14.7%) than mothers without a previous pregnancy (p <0.001). Conclusions: The results suggest some degree of association between maternal characteristics and use of folic acid. To increase the consumption of folic acid before pregnancy new measures are need to promote this primary prevention, among couples and health professionals. This study highlights some maternal characteristics and subgroups of mothers for who the measures should be reinforced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we showthatthe adherens junction proteins afadin and CDH2 are criticalforthe control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telenceph-alon leads to a phenotype resembling subcortical band heterotopia, also known as “double cortex,” a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype.