930 resultados para CERIUM OXIDE NANOPARTICLES
Resumo:
4-Nitro 2-picoline-l-oxide (NPicO) complexes of the formulae La (NPicO)5 (CIO4)3, Ln2 (NPicO)9 (C1O4)6 (Ln = Pr, Nd, and Gd) and Ln (NPicO)4 (CIO4)3 (Ln == Tb, Dy, Ho and Yb) have been synthesised and characterised by analysis, electrolytic conductance, infrared, proton NMR and electronic spectral data. A tentative coordination number of 6 for all the complexes have been assigned
Resumo:
A fully automated, versatile Temperature Programmed Desorption (TDP), Temperature Programmed Reaction (TPR) and Evolved Gas Analysis (EGA) system has been designed and fabricated. The system consists of a micro-reactor which can be evacuated to 10−6 torr and can be heated from 30 to 750°C at a rate of 5 to 30°C per minute. The gas evolved from the reactor is analysed by a quadrupole mass spectrometer (1–300 amu). Data on each of the mass scans and the temperature at a given time are acquired by a PC/AT system to generate thermograms. The functioning of the system is exemplified by the temperature programmed desorption (TPD) of oxygen from YBa2Cu3−xCoxO7 ± δ, catalytic ammonia oxidation to NO over YBa2Cu3O7−δ and anaerobic oxidation of methanol to CO2, CO and H2O over YBa2Cu3O7−δ (Y123) and PrBa2Cu3O7−δ (Pr123) systems.
Resumo:
Ferrites of the formula MoxFe3-xO4, prepared by a soft-chemistry route, show mixed valence states of both iron and molybdenum cations. Mössbauer studies show that Fe2+ and Fe3+ ions are present on both the A and B sites, giving Fe an average oxidation state between 2+ and 3+. Molybdenum is present in the 3+ and the 4+ states on the B sites. The presence of Mo in the 3+ state has been established by determining the Mo3+-O distance (2.2 Å), for the first time, by Mo K-EXAFS. The mixed valence of Fe on both the A and B sites and of Mo on the B sites is responsible for the fast electron transfer between the cations. All the Mössbauer parameters including the line width show a marked change at a composition (x ? 0.3) above which the concentration of Fe2+A increases rapidly.
Resumo:
A series of layered perovskite oxides of the formula K1-xLaxCa2-xNb3O10 for 0 < x ≤ 1.0 have been prepared. All the members are isostructural, possessing the structure of KCa2Nb3O10. The interlayer potassium ions in the new series can be ion-exchanged with protons to give H1-xLaxCa2-xNb3O10. The latter readily forms intercalation compounds of the formula (CnH2n+1NH3)1-x LaxCa2-xNb3O10, just as the parent solid acid HCa2Nb3O10. The end member LaCaNb3O10 containing no interlayer cations is a novel layered perovskite oxide, being a n = 3 member of the series An-1BnX3n+1.
Resumo:
We have synthesized Dy3+-doped ZnO nanoparticles at room temperature through the sol-gel method. X-ray diffraction and Scanning electron microscopic studies confirm the crystalline nature of the particles. Excitonic absorption of ZnO shows three different bands, and we observe that incorporation of Dy3+ results in the shifting and broadening of the n=1 absorption band of ZnO. Photoluminescence studies done at the excitation wavelength of 335 nm show broad emission containing five different bands. Open-aperture z-scan studies done at 532 nm using 5 ns laser pulses show an optical limiting behavior, which numerically fits to a three-photon type absorption process. The nonlinearity is essentially resonant, as it is found to increase consistently with Dy3+ concentration. This feature makes Dy3+-doped ZnO a flexible optical limiter for potential device applications.
Resumo:
A novel mechanism is proposed for efficient manipulation of transport forces acting on the droplets during spray pyrolytic deposition of thin films. A ‘‘burst mode’’ technique of spraying is used to adjust the deposition conditions so as to transport the droplets under the new mechanism. Transparent, conducting thin films of undoped tin oxide prepared by this method showed significant improvement in growth rate. The films are found to be of fairly good quality with optical transmission of 82% and sheet resistance of 35 Ω/☒. The films are chemically homogeneous and grow preferentially along 〈200〉 direction.
Resumo:
Oxide pyrochlores of the formula A2BB? O7 (A = La, Nd; BB? = Pb, Sn, Bi) have been synthesized by a low-temperature ambient-pressure route employing KOH melts. All the compositions, including La2Bi2O7 and its strontium-substituted derivatives, La2-xSrxBi2O7-?, are deeply colored insulators, confirming that a metallic ground state is not achieved for Pb(IV) and Bi(IV/V) oxides with the pyrochlore structure.
Resumo:
The impedance of sealed nickel/cadmium cells around a cell e.m.f. of 0.0 V was measured at five different temperatures between � 10 and +30 °C. The results show that the behaviour is similar at all temperatures. Based on the experimental results, the relation between charge-transfer resistance (Rct) and temperature (T) has been established for the Volmer reaction. Further, the value of cathodic transfer coefficient (?) has been estimated.
Resumo:
A new delafossite oxide, AgLi1/3Ru2/3]O-2, synthesized by ion-exchanging interlayer-Li+ with Ag+ in layered Li2RuO3, is reported. The transformation of layered Li2RuO3 (monoclinic, space group C2/c) to AgLi1/3Ru2/3]O-2 possessing a delafossite structure (space group R (3) over barm) has been established with powder X-ray diffraction. The successful conversion of LiLi1/3Ru2/3]O-2 to AgLi1/3Ru2/3]O-2 is further confirmed by EDAX analysis. The diffuse reflectance spectrum of AgLi1/3Ru2/3]O-2 shows broad absorption in the UV-visible region suggesting its use as a photocatalyst. The photocatalytic activity of AgLi1/3Ru2/3]O-2 has been investigated by degrading various dyes. It showed significant photocatalytic activity for dye degradation both under UV and solar radiation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate that the structural and optical properties of a sol-gel deposited zinc oxide thin film can be tuned by varying the composition of the sol, consisting of ethylene glycol and glycerol. A systematic study of the effect of the composition of sol on the mean grain size, thickness, and defect density of the zinc oxide film is presented. About 20% glycerol content in the sol is observed to improve the quality of the film, as evaluated by X-ray diffraction and photoluminescence studies. Thus, optimizing the composition of the sol for about 60 nm thick ZnO film using 20% glycerol resulted in the zinc oxide film that is about 80% transparent in visible spectrum, exhibiting electrical resistivity of about 18 Omega cm and field-effect mobility of 0.78 cm(2)/(V s). (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3515894] All rights reserved.
Resumo:
An organic-inorganic composite material is obtained by self-assembly of 2,3-didecyloxy-anthracene (DDOA), an organogelator of butanol, and organic-capped ZnO nanoparticles (NPs). The ligand 3, 2,3-di(6-oxy-n-hexanoic acid)-anthracene, designed to cap ZnO and interact with the DDOA nanofibers by structural similarity, improves the dispersion of the NPs into the organogel. The composite material displays mechanical properties similar to those of the pristine DDOA organogel, but gelates at a lower critical concentration and emits significantly less, even in the presence of very small amounts of ZnO NPs. The ligand 3 could also act as a relay to promote the photo-induced quenching process.
Resumo:
Electrochemical reduction of exfoliated graphene oxide, prepared from pre-exfoliated graphite, in acetamide-urea-ammonium nitrate ternary eutectic melt results in few layer-graphene thin films. Negatively charged exfoliated graphene oxide is attached to positively charged cystamine monolyer self-assembled on a gold surface. Electrochemical reduction of the oriented graphene oxide film is carried out in a room temperature, ternary molten electrolyte. The reduced film is characterized by atomic force microscopy (AFM), conductive AFM, Fourier-transform infrared spectroscopy and Raman spectroscopy. Ternary eutectic melt is found to be a suitable medium for the regulated reduction of graphene oxide to reduced graphene oxide-based sheets on conducting surfaces. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
ZnO nanoparticles (ZnO NPs) were grown on the surface of multiwall carbon nanotubes (MWCNTs) by a wet chemical synthesis route. The anchoring of ZnO NPs on acid-treated MWCNTs was achieved under remarkably mild reaction conditions (low temperature, atmospheric pressure, without any capping agents and no need for subsequent thermal annealing). MWCNT/ZnO NPs hybrid samples with varying loading of ZnO NPs are prepared. A very high degree of dispersion of ZnO NPs over the surface of MWCNT was achieved by suitably controlling the ratio of ZnO NPs and MWCNTs in the solution. The hybrid sample was characterized by electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy (XPS). Transmission electron microscope images of the as-prepared MWCNT/ZnO NPs hybrid reveal that mono-dispersed ZnO NPs are anchored stably on functionalized MWCNTs. The interaction of ZnO NPs with MWCNT surface was interpreted through XPS analysis.