972 resultados para CB-HRP
Resumo:
El empleo de biomasa como combustible para la generación de bio-energía va en aumento en la actualidad, debido a su impacto medioambiental nulo en cuanto a las emisiones de CO2. Por lo tanto la generación de cenizas de biomasa, residuo de la producción de esta energía, constituye un problema medioambiental con un claro impacto social y económico. Este tipo de ceniza tiene contenidos en óxidos que la hacen atractiva para su empleo como sustituto parcial del cemento Portland, lo cual proporciona una salida eco-eficiente a este residuo, reduciendo al mismo tiempo la emisión de gases de efecto invernadero asociada a la fabricación del cemento. Esta investigación se centra en el desarrollo de nuevos e innovadores materiales base-cemento eco-eficientes que incorporan ceniza de biomasa para su aplicación integral en construcción. Para ello, se emplea una ceniza de biomasa (CB) procedente de un combustor de lecho fluidizado, cuya biomasa de combustión es principalmente restos de corteza de eucalipto, suministrada por el grupo ENCE-Navia (Asturias). El trabajo desarrollado en la presente tesis doctoral, tiene como primera fase la caracterización de esta ceniza y el análisis de viabilidad de su valorización en materiales base-cemento. Dentro de este análisis, se propone la activación de la ceniza CB mediante tratamiento hidrotermal (TH) en diferentes condiciones de medio activante, temperatura y tiempo de proceso, con el objetivo de favorecer la formación de fases hidratadas que potencien la valorización de la ceniza en el campo de los materiales de construcción. Como fase hidratada de interés se obtiene la fase tobermorita (Ca2.25(Si3O7.5(OH)1.5)(H2O)), precursora del gel C-S-H, responsable del desarrollo de resistencias mecánicas en los materiales base-cemento. El proceso de TH se optimiza para la síntesis más eficiente de esta fase. El estudio posterior de las propiedades mecánicas y micro-estructurales de pastas de cemento eco-eficientes que incorporan la ceniza CB y la ceniza tratada hidrotermalmente, CB-TH, confirma una mayor viabilidad de incorporación de la ceniza CB como sustituto parcial del cemento Portland. Como siguiente paso en el desarrollo de estos innovadores materiales base-cemento eco-eficientes se amplía el estudio multi-escalar de los materiales que incorporan CB mediante diferentes ensayos físico-mecánicos y de durabilidad. Los resultados indican que la presencia de la ceniza de biomasa no tiene efectos negativos sobre las propiedades físicas de los morteros eco-eficientes estudiados. Sin embargo, la adición de CB proporciona una mejor durabilidad del material al producir modificaciones de la microestructura que dificultan el transporte de agentes agresivos. Por otro lado, los morteros con un 10 y 20% de sustitución parcial de cemento por la ceniza de biomasa CB (CB-10 y CB-20) presentan una resistencia a compresión de 53.3 y 50.5 MPa a 28 días de curado, respectivamente. Estos morteros son comparables con un cemento Portland tradicional tipo CEM I de clase de resistencia 42.5 R. Por último, y con el fin de proporcionar la apertura de estos nuevos cementos eco-eficientes al mercado en el campo de los materiales de construcción, se estudian propiedades concretas relacionadas con diferentes tipos de aplicaciones. Concretamente se estudian en detalle las propiedades relativas a la aplicación en baldosas de mortero y los resultados indican unas prestaciones del material eco-eficiente con incorporación de CB similares o mejoradas con respecto al cemento Portland. Se analiza también la viabilidad de aplicación estructural de los cementos eco-eficientes desarrollados mediante el estudio de la adherencia al acero, que resulta similar a la del material de referencia. En cuanto a los resultados de extracción y caracterización de la fase acuosa de los poros, en todas las matrices eco-eficientes se obtiene un pH que garantiza la pasivación de la armadura. Sin embargo, el alto contenido en cloruros de dicha fase acuosa sugiere la conveniencia de realizar un análisis más detallado para la aplicación de los nuevos materiales eco-eficientes en hormigón armado. Se comprueba que todas las matrices que incorporan CB en porcentajes entre un 10 y un 90%, se pueden considerar adecuadas como nuevos materiales de construcción más eco-eficientes en aplicaciones con distintos niveles de exigencias mecánicas y sin problemas ambientales asociados con procesos de lixiviación. Con el presente trabajo de investigación se completan los objetivos iniciales de la tesis, con la obtención de nuevos e innovadores materiales base-cemento eco-eficientes que incorporan cenizas de biomasa (CB) con aplicación integral en el campo de la construcción. ABSTRACT The use of biomass as a fuel for the generation of bio-energy is increasing nowadays, due to its zero environmental impact in terms of CO2 emissions. Therefore the generation of biomass ash, a by-product of this energy, is an environmental problem with a clear social and economic impact. This type of ash contains oxides that make it attractive to be used as a partial replacement of Portland cement, providing an eco-efficient solution to this residue, while reducing the emission of greenhouse gases associated with the production of cement. The present research is focused on the development of new and innovative eco-efficient cement-based materials that incorporate biomass ash for their comprehensive application in construction. For this purpose a biomass ash (CB) is used from a fluidized bed forest combustor mainly fed with the bark of eucalyptus trees, provided by the ENCE-Navia (Asturias) group. The work includes in the first stage the characterization of the raw materials and the analysis of viability of their valorization in cement-based materials. Within this analysis, the activation of the ash is proposed by hydrothermal treatment (HT) in different conditions of activation medium, temperature and process duration, aiming an enhanced formation of hydrated phases to improve the ash valorization in the construction materials field. As an interesting hydrated phase, the tobermorite (Ca2.25(Si3O7.5(OH)1.5)(H2O)) is obtained from the process. This phase is considered as a precursor of the gel C-S-H, responsible for the development of mechanical strength in cement-based materials. HT process is optimized for the most efficient synthesis of tobermorite. The analysis of mechanical and microstructural properties of eco-efficient cement pastes incorporating CB ash and hydrothermally treated ash, CB-TH, confirms an improved viability of incorporation of CB ash as a partial replacement for Portland cement in the case. As a next step in the development of these innovative eco-efficient cement-based materials, a multiscale study of the materials that incorporate CB by different physical-mechanical and durability tests is carried out. The results indicate that the presence of biomass ash does not give rise to negative effects on the physical properties of the eco-efficient mortars analyzed. Nevertheless, the addition of CB produces a better durability performance due to microstructural modifications that hinder the transport of aggressive agents through the material. Moreover, mortars with a 10% and 20% of partial substitution of cement by the CB biomass ash (CB-10 and CB-20) show a compressive resistance of 53.3 and 50.5 MPa at 28 days of curing, respectively. These mortars are comparable to an ordinary Portland cement type CEM I with a resistance class of 42.5R. Finally, and in order to provide the opening of these new eco-efficient cement to the market in the field of construction materials, certain properties specifically related to different types of applications are studied. Among these, the properties concerning the application in mortar tiles are analyzed and the results indicate a similar, or even better performance of the eco-efficient mortar that incorporates CB, with respect to Portland cement. The viability of structural application of the developed eco-efficient cement is also performed considering the study of the adhesion to steel, with results similar to those of the reference material. Regarding the results of extraction and analysis of the aqueous phase of the pores, a pH value guaranteeing reinforcement passivation is obtained for all the eco-efficient matrices. However, high chloride content is obtained suggesting the suitability of a more detailed study to evaluate the application of these new eco-efficient materials in reinforced concrete. It is established that all the matrices incorporating CB in percentages between 10 and 90% may be considered adequate as new more eco-efficient construction materials in applications with different levels of mechanical demand and without environmental problems associated to leaching processes. In this research the initial objectives of the thesis are fulfilled by obtaining new and innovative eco-efficient cement-based materials that incorporate biomass ashes (CB) with comprehensive application in the construction field.
Resumo:
This work was financially supported by the German Federal Ministry of Food and Agriculture (BMEL) through the Federal Office for Agriculture and Food (BLE), (2851ERA01J). FT and RPR were supported by FACCE MACSUR (3200009600) through the Finnish Ministry of Agriculture and Forestry (MMM). EC, HE and EL were supported by The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (220-2007-1218) and by the strategic funding ‘Soil-Water-Landscape’ from the faculty of Natural Resources and Agricultural Sciences (Swedish University of Agricultural Sciences) and thank professor P-E Jansson (Royal Institute of Technology, Stockholm) for support. JC, HR and DW thank the INRA ACCAF metaprogramm for funding and Eric Casellas from UR MIAT INRA for support. CB was funded by the Helmholtz project “REKLIM—Regional Climate Change”. CK was funded by the HGF Alliance “Remote Sensing and Earth System Dynamics” (EDA). FH was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under the Grant FOR1695. FE and SS acknowledge support by the German Science Foundation (project EW 119/5-1). HH, GZ, SS, TG and FE thank Andreas Enders and Gunther Krauss (INRES, University of Bonn) for support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Resumo:
Human hematopoiesis originates in a population of stem cells with transplantable lympho-myeloid reconstituting potential, but a method for quantitating such cells has not been available. We now describe a simple assay that meets this need. It is based on the ability of sublethally irradiated immunodeficient nonobese diabetic–scid/scid (NOD/SCID) mice to be engrafted by intravenously injected human hematopoietic cells and uses limiting dilution analysis to measure the frequency of human cells that produce both CD34−CD19+ (B-lymphoid) and CD34+ (myeloid) colony-forming cell progeny in the marrow of such recipients 6 to 8 weeks post-transplant. Human cord blood (CB) contains ≈5 of these competitive repopulating units (CRU) per ml that have a similar distribution between the CD38− and CD38+ subsets of CD34+ CB cells as long-term culture-initiating cells (LTC-IC) (4:1 vs. 2:1). Incubation of purified CD34+CD38− human CB cells in serum-free medium containing flt-3 ligand, Steel factor, interleukin 3, interleukin 6, and granulocyte colony-stimulating factor for 5–8 days resulted in a 100-fold expansion of colony-forming cells, a 4-fold expansion of LTC-IC, and a 2-fold (but significant, P < 0.02) increase in CRU. The culture-derived CRU, like the original CB CRU, generated pluripotent, erythroid, granulopoietic, megakaryopoietic, and pre-B cell progeny upon transplantation into NOD/SCID mice. These findings demonstrate an equivalent phenotypic heterogeneity amongst human CB cells detectable as CRU and LTC-IC. In addition, their similarly modest response to stimulation by a combination of cytokines that extensively amplify LTC-IC from normal adult marrow underscores the importance of ontogeny-dependent changes in human hematopoietic stem cell proliferation and self-renewal.
Resumo:
Funding: British Women’s Heart and Health Study is funded by the Department of Health grant no. 90049 and the British Heart Foundation grant no. PG/09/022. British Regional Heart Study is supported by the British Heart Foundation (grant RG/ 13/16/30528). CB (COPDBEAT) received funding from the Medical Research Council UK (grant no. G0601369), CB (COPDBEAT) and AJW (UKCOPD) were supported by the National Institute for Health Research (NIHR Leicester Biomedical Research Unit). MB (COPDBEAT) received funding from the NIHR (grant no. PDF-2013-06-052). Hertfordshire Cohort Study received support from the Medical Research Council, Arthritis Research UK, the International Osteoporosis Foundation and the British Heart Foundation; NIHR Biomedical Research Centre in Nutrition, University of Southampton; NIHR Musculoskeletal Biomedical Research Unit, University of Oxford. Generation Scotland: Scottish Family Health Study is funded by the Chief Scientist Office, Scottish Government Health Directorates, grant number CZD/16/6 and the Scottish Funding Council grant HR03006. EU COPD Gene Scan is funded by the European Union, grant no. QLG1-CT-2001-01012. English Longitudinal Study of Aging is funded by the Institute of Aging, NIH grant No. AG1764406S1. GoDARTs is funded by the Wellcome Trust grants 072960, 084726 and 104970. MDT has been supported by MRC fellowship G0902313. UK Biobank Lung Exome Variant Evaluation study was funded by a Medical Research Council strategic award to MDT, IPH, DPS and LVW (MC_PC_12010)
Resumo:
Funding: The authors acknowledge the Fonds of Chemical Industry for funding JvdB by their Chemiefonds grant and the DFG for funding PB and CB (CRC 1093).
Resumo:
Mutations in the hook gene alter intracellular trafficking of internalized ligands in Drosophila. To dissect this defect in more detail, we developed a new approach to visualize the pathway taken by the Bride of Sevenless (Boss) ligand after its internalization into R7 cells. A chimeric protein consisting of HRP fused to Boss (HRP-Boss) was expressed in R8 cells. This chimera was fully functional: it rescued the boss mutant phenotype, and its trafficking was indistinguishable from that of the wild-type Boss protein. The HRP activity of the chimera was used to follow HRP-Boss trafficking on the ultrastructural level through early and late endosomes in R7 cells. In both wild-type and hook mutant eye disks, HRP-Boss was internalized into R7 cells. In wild-type tissue, Boss accumulated in mature multivesicular bodies (MVBs) within R7 cells; such accumulation was not observed in hook eye disks, however. Quantitative electron microscopy revealed a loss of mature MVBs in hook mutant tissue compared with wild type, whereas more than twice as many multilammelar late endosomes were detected. Our genetic analysis indicates that Hook is required late in endocytic trafficking to negatively regulate delivery from mature MVBs to multilammelar late endosomes and lysosomes.
Resumo:
To investigate the role of filamentous actin in the endocytic pathway, we used the cell-permeant drug Jasplakinolide (JAS) to polymerize actin in intact polarized Madin–Darby canine kidney (MDCK) cells. The uptake and accumulation of the fluid-phase markers fluorescein isothiocyanate (FITC)-dextran and horseradish peroxidase (HRP) were followed in JAS-treated or untreated cells with confocal fluorescence microscopy, biochemical assays, and electron microscopy. Pretreatment with JAS increased the uptake and accumulation of fluid-phase markers in MDCK cells. JAS increased endocytosis in a polarized manner, with a marked effect on fluid-phase uptake from the basolateral surface but not from the apical surface of polarized MDCK cells. The early uptake of FITC-dextran and HRP was increased more than twofold in JAS-treated cells. At later times, FITC-dextran and HRP accumulated in clustered endosomes in the basal and middle regions of JAS-treated cells. The large accumulated endosomes were similar to late endosomes but they were not colabeled for other late endosome markers, such as rab7 or mannose-6-phosphate receptor. JAS altered transport in the endocytic pathway at a later stage than the microtubule-dependent step affected by nocodazole. JAS also had a notable effect on cell morphology, inducing membrane bunching at the apical pole of MDCK cells. Although other studies have implicated actin in endocytosis at the apical cell surface, our results provide novel evidence that filamentous actin is also involved in the endocytosis of fluid-phase markers from the basolateral membrane of polarized cells.
Resumo:
The membrane proteins of all regulated secretory organelles (RSOs) recycle after exocytosis. However, the recycling of those membrane proteins that are targeted to both dense core granules (DCGs) and synaptic-like microvesicles (SLMVs) has not been addressed. Since neuroendocrine cells contain both RSOs, and the recycling routes that lead to either organelle overlap, transfer between the two pools of membrane proteins could occur during recycling. We have previously demonstrated that a chimeric protein containing the cytosolic and transmembrane domains of P-selectin coupled to horseradish peroxidase is targeted to both the DCG and the SLMV in PC12 cells. Using this chimera, we have characterized secretagogue-induced traffic in PC12 cells. After stimulation, this chimeric protein traffics from DCGs to the cell surface, internalizes into transferrin receptor (TFnR)-positive endosomes and thence to a population of secretagogue-responsive SLMVs. We therefore find a secretagogue-dependent rise in levels of HRP within SLMVs. In addition, the levels within SLMVs of the endogenous membrane protein, synaptotagmin, as well as a green fluorescent protein-tagged version of vesicle-associated membrane protein (VAMP)/synaptobrevin, also show a secretagogue-dependent increase.
Resumo:
Antigen presentation to CD4+ T lymphocytes requires transport of newly synthesized major histocompatibility complex (MHC) class II molecules to the endocytic pathway, where peptide loading occurs. This step is mediated by a signal located in the cytoplasmic tail of the MHC class II-associated Ii chain, which directs the MHC class II-Ii complexes from the trans-Golgi network (TGN) to endosomes. The subcellular machinery responsible for the specific targeting of MHC class II molecules to the endocytic pathway, as well as the first compartments these molecules enter after exit from the TGN, remain unclear. We have designed an original experimental approach to selectively analyze this step of MHC class II transport. Newly synthesized MHC class II molecules were caused to accumulate in the Golgi apparatus and TGN by incubating the cells at 19°C, and early endosomes were functionally inactivated by in vivo cross-linking of transferrin (Tf) receptor–containing endosomes using Tf-HRP complexes and the HRP-insoluble substrate diaminobenzidine. Inactivation of Tf-containing endosomes caused a marked delay in Ii chain degradation, peptide loading, and MHC class II transport to the cell surface. Thus, early endosomes appear to be required for delivery of MHC class II molecules to the endocytic pathway. Under cross-linking conditions, most αβIi complexes accumulated in tubules and vesicles devoid of γ-adaptin and/or mannose-6-phosphate receptor, suggesting an AP1-independent pathway for the delivery of newly synthesized MHC class II molecules from the TGN to endosomes.
Resumo:
Insulin and guanosine-5′-O-(3-thiotriphosphate) (GTPγS) both stimulate glucose transport and translocation of the insulin-responsive glucose transporter 4 (GLUT4) to the plasma membrane in adipocytes. Previous studies suggest that these effects may be mediated by different mechanisms. In this study we have tested the hypothesis that these agonists recruit GLUT4 by distinct trafficking mechanisms, possibly involving mobilization of distinct intracellular compartments. We show that ablation of the endosomal system using transferrin-HRP causes a modest inhibition (∼30%) of insulin-stimulated GLUT4 translocation. In contrast, the GTPγS response was significantly attenuated (∼85%) under the same conditions. Introduction of a GST fusion protein encompassing the cytosolic tail of the v-SNARE cellubrevin inhibited GTPγS-stimulated GLUT4 translocation by ∼40% but had no effect on the insulin response. Conversely, a fusion protein encompassing the cytosolic tail of vesicle-associated membrane protein-2 had no significant effect on GTPγS-stimulated GLUT4 translocation but inhibited the insulin response by ∼40%. GTPγS- and insulin-stimulated GLUT1 translocation were both partially inhibited by GST-cellubrevin (∼50%) but not by GST-vesicle-associated membrane protein-2. Incubation of streptolysin O-permeabilized 3T3-L1 adipocytes with GTPγS caused a marked accumulation of Rab4 and Rab5 at the cell surface, whereas other Rab proteins (Rab7 and Rab11) were unaffected. These data are consistent with the localization of GLUT4 to two distinct intracellular compartments from which it can move to the cell surface independently using distinct sets of trafficking molecules.
Resumo:
One pathway in forming synaptic-like microvesicles (SLMV) involves direct budding from the plasma membrane, requires adaptor protein 2 (AP2) and is brefeldin A (BFA) resistant. A second route leads from the plasma membrane to an endosomal intermediate from which SLMV bud in a BFA-sensitive, AP3-dependent manner. Because AP3 has been shown to bind to a di-leucine targeting signal in vitro, we have investigated whether this major class of targeting signals is capable of directing protein traffic to SLMV in vivo. We have found that a di-leucine signal within the cytoplasmic tail of human tyrosinase is responsible for the majority of the targeting of HRP-tyrosinase chimeras to SLMV in PC12 cells. Furthermore, we have discovered that a Met-Leu di-hydrophobic motif within the extreme C terminus of synaptotagmin I supports 20% of the SLMV targeting of a CD4-synaptotagmin chimera. All of the traffic to the SLMV mediated by either di-Leu or Met-Leu is BFA sensitive, strongly suggesting a role for AP3 and possibly for an endosomal intermediate in this process. The differential reduction in SLMV targeting for HRP-tyrosinase and CD4-synaptotagmin chimeras by di-alanine substitutions or BFA treatment implies that different proteins use the two routes to the SLMV to differing extents.
Resumo:
Strains of Xanthomonas campestris pv. vesicatoria (Xcv) carrying avrBs2 are specifically recognized by Bs2 pepper plants, resulting in localized cell death and plant resistance. Agrobacterium-mediated transient expression of the Xcv avrBs2 gene in plant cells results in Bs2-dependent cell death, indicating that the AvrBs2 protein alone is sufficient for the activation of disease resistance-mediated cell death in planta. We now provide evidence that AvrBs2 is secreted from Xcv and that secretion is type III (hrp) dependent. N- and C-terminal deletion analysis of AvrBs2 has identified the effector domain of AvrBs2 recognized by Bs2 pepper plants. By using a truncated Pseudomonas syringae AvrRpt2 effector reporter devoid of type III signal sequences, we have localized the minimal region of AvrBs2 required for type III secretion in Xcv. Furthermore, we have identified the region of AvrBs2 required for both type III secretion and translocation to host plants. The mapping of AvrBs2 sequences sufficient for type III delivery also revealed the presence of a potential mRNA secretion signal.
Resumo:
Coiled bodies (CBs) are nuclear organelles involved in the metabolism of small nuclear RNAs (snRNAs) and histone messages. Their structural morphology and molecular composition have been conserved from plants to animals. CBs preferentially and specifically associate with genes that encode U1, U2, and U3 snRNAs as well as the cell cycle–regulated histone loci. A common link among these previously identified CB-associated genes is that they are either clustered or tandemly repeated in the human genome. In an effort to identify additional loci that associate with CBs, we have isolated and mapped the chromosomal locations of genomic clones corresponding to bona fide U4, U6, U7, U11, and U12 snRNA loci. Unlike the clustered U1 and U2 genes, each of these loci encode a single gene, with the exception of the U4 clone, which contains two genes. We next examined the association of these snRNA genes with CBs and found that they colocalized less frequently than their multicopy counterparts. To differentiate a lower level of preferential association from random colocalization, we developed a theoretical model of random colocalization, which yielded expected values for χ2 tests against the experimental data. Certain single-copy snRNA genes (U4, U11, and U12) but not controls were found to significantly (p < 0.000001) associate with CBs. Recent evidence indicates that the interactions between CBs and genes are mediated by nascent transcripts. Taken together, these new results suggest that CB association may be substantially augmented by the increased transcriptional capacity of clustered genes. Possible functional roles for the observed interactions of CBs with snRNA genes are discussed.
Resumo:
Peroxidase activity was characterized in lettuce (Lactuca sativa L.) leaf tissue. Changes in the activity and distribution of the enzyme were examined during the development of a nonhost hypersensitive reaction (HR) induced by Pseudomonas syringae (P. s.) pv phaseolicola and in response to an hrp mutant of the bacterium. Assays of activity in tissue extracts revealed pH optima of 4.5, 6.0, 5.5 to 6.0, and 6.0 to 6.5 for the substrates tetramethylbenzidine, guaiacol, caffeic acid, and chlorogenic acid, respectively. Inoculation with water or with wild-type or hrp mutant strains of P. s. pv phaseolicola caused an initial decline in total peroxidase activity; subsequent increases depended on the hydrogen donor used in the assay. Guaiacol peroxidase recovered more rapidly in tissues undergoing the HR, whereas changes in tetramethylbenzidine peroxidase were generally similar in the two interactions. In contrast, increases in chlorogenic acid peroxidase were significantly higher in tissues inoculated with the hrp mutant. During the HR, increased levels of Mn2+/2,4-dichlorophenol-stimulated NADH and NADPH oxidase activities, characteristic of certain peroxidases, were found in intercellular fluids and closely matched the accumulation of H2O2 in the apoplast. Histochemical analysis of peroxidase distribution by electron microscopy revealed a striking, highly localized increase in activity within the endomembrane system and cell wall at the sites of bacterial attachment. However, no clear differences in peroxidase location were observed in tissue challenged by the wild-type strain or the hrp mutant. Our results highlight the significance of the subcellular control of oxidative reactions leading to the generation of reactive oxygen species, cell wall alterations, and the HR.
Resumo:
The Zn(Scys)4 unit is present in numerous proteins, where it assumes structural, regulatory, or catalytic roles. The same coordination is found naturally around iron in rubredoxins, several structures of which have been refined at resolutions of, or near to, 1 A. The fold of the small protein rubredoxin around its metal ion is an excellent model for many zinc finger proteins. Zn-substituted rubredoxin and its Fe-containing counterpart were both obtained as the products of the expression in Escherichia coli of the rubredoxin-encoding gene from Clostridium pasteurianum. The structures of both proteins have been refined with an anisotropic model at atomic resolution (1.1 A, R = 8.3% for Fe-rubredoxin, and 1.2 A, R = 9.6% for Zn-rubredoxin) and are very similar. The most significant differences are increased lengths of the M-S bonds in Zn-rubredoxin (average length, 2.345 A) as compared with Fe-rubredoxin (average length, 2.262 A). An increase of the CA-CB-SG-M dihedral angles involving Cys-6 and Cys-39, the first cysteines of each of the Cys-Xaa-Xaa-Cys metal binding motifs, has been observed. Another consequence of the replacement of iron by zinc is that the region around residues 36-46 undergoes larger displacements than the remainder of the polypeptide chain. Despite these changes, the main features of the FeS4 site, namely a local 2-fold symmetry and the characteristic network of N-H...S hydrogen bonds, are conserved in the ZnS4 site. The Zn-substituted rubredoxin provides the first precise structure of a Zn(Scys)4 unit in a protein. The nearly identical fold of rubredoxin around iron or zinc suggests that at least in some of the sites where the metal has mainly a structural role-e.g., zinc fingers-the choice of the relevant metal may be directed by its cellular availability and mobilization processes rather than by its chemical nature.