994 resultados para CATALYST-TRANSFER POLYCONDENSATION
Resumo:
YAlO3 (YAP) crystals with different Yb3+ concentration have been grown by Czochralski method and cooperative fluorescence of Yb3+ ions in YAP crystal was studied under 940-nm infrared (IR) LD excitation at room temperature. The Yb concentration dependence of absorption intensity of IR and charge transfer bands exhibit different features. The green emission band in the region of 480-520nm was assigned to the cooperative deexcitation of two Yb3+ ions. The remaining upconverted emission bands containing various sharp peaks associated with impurity ions were observed and discussed. Charge transfer luminescence of heavily doped 20at% Yb:YAP is strongly temperature dependent and no concentration quenching of the charge transfer luminescence was found through the investigation of different Yb levels samples. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The Yb (10%):GGG and Yb (30%): GGG crystals have been grown by the Czochralski method. The chemical compositions are: Yb1.07Gd1.74Ga5.19O12 and Yb0.33Gd1.47Ga5.2O12. The absorption and emission spectra of Yb:GGG crystal at room temperature have been measured. The spectroscopic parameters of Yb:GGG and Yb:YAG have been compared. Optical absorption spectra of Yb:GGG show 4f-4f transitions related to Gd3+ ion around 300 nm, and also an onset of charge transfer (CT) transitions from oxygen ligands to Gd3+ or Yb3+ cations below 240nm. The CT absorption of Yb3+ is largely overlapped by that of Gd3+ ions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We report on an optical interference method for transferring periodic microstructures of metal film from a supporting substrate to a receiving substrate by means of five-beam interference of femtosecond laser pulses. Scanning electron microscopy and optical microscopy revealed microstructures with micrometer-order were transferred to the receiving substrate. In the meanwhile, a negative copy of the transferred structures was induced in the metal film on the supporting substrate. The diffraction characteristics of the transferred structures were also evaluated. The present technique allows one-step realization of functional optoelectronic devices. (C) 2005 Optical Society of America.