941 resultados para CARD Signaling Adaptor Proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein folding and unfolding are complex phenomena, and it is accepted that multidomain proteins generally follow multiple pathways. Maltose-binding protein (MBP) is a large (a two-domain, 370-amino acid residue) bacterial periplasmic protein involved in maltose uptake. Despite the large size, it has been shown to exhibit an apparent two-state equilibrium unfolding in bulk experiments. Single-molecule studies can uncover rare events that are masked by averaging in bulk studies. Here, we use single-molecule force spectroscopy to study the mechanical unfolding pathways of MBP and its precursor protein (preMBP) in the presence and absence of ligands. Our results show that MBP exhibits kinetic partitioning on mechanical stretching and unfolds via two parallel pathways: one of them involves a mechanically stable intermediate (path I) whereas the other is devoid of it (path II). The apoMBP unfolds via path I in 62% of the mechanical unfolding events, and the remaining 38% follow path II. In the case of maltose-bound MBP, the protein unfolds via the intermediate in 79% of the cases, the remaining 21% via path II. Similarly, on binding to maltotriose, a ligand whose binding strength with the polyprotein is similar to that of maltose, the occurrence of the intermediate is comparable (82% via path I) with that of maltose. The precursor protein preMBP also shows a similar behavior upon mechanical unfolding. The percentages of molecules unfolding via path I are 53% in the apo form and 68% and 72% upon binding to maltose and maltotriose, respectively, for preMBP. These observations demonstrate that ligand binding can modulate the mechanical unfolding pathways of proteins by a kinetic partitioning mechanism. This could be a general mechanism in the unfolding of other large two-domain ligand-binding proteins of the bacterial periplasmic space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autosomal recessive primary microcephaly (MCPH) is a genetic disorder that causes a reduction of cortical outgrowth without severe interference with cortical patterning. It is associated with mutations in a number of genes encoding protein involved in mitotic spindle formation and centrosomal activities or cell cycle control. We have shown previously that blocking vasoactive intestinal peptide (VIP) during gestation in mice by using a VIP antagonist (VA) results in microcephaly. Here, we have shown that the cortical abnormalities caused by prenatal VA administration mimic the phenotype described in MCPH patients and that VIP blockade during neurogenesis specifically disrupts Mcph1 signaling. VA administration reduced neuroepithelial progenitor proliferation by increasing cell cycle length and promoting cell cycle exit and premature neuronal differentiation. Quantitative RT-PCR and Western blot showed that VA downregulated Mcph1. Inhibition of Mcph1 expression led to downregulation of Chk1 and reduction of Chk1 kinase activity. The inhibition of Mcph1 and Chk1 affected the expression of a specific subset of cell cycle-controlling genes and turned off neural stem cell proliferation in neurospheres. Furthermore, in vitro silencing of either Mcph1 or Chk1 in neurospheres mimicked VA-induced inhibition of cell proliferation. These results demonstrate that VIP blockade induces microcephaly through Mcph1 signaling and suggest that VIP/Mcph1/Chk1 signaling is key for normal cortical development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells (DCs) as sentinels of the immune system are important for eliciting both primary and secondary immune responses to a plethora of microbial pathogens. Cooperative stimulation of a complex set of pattern-recognition receptors, including TLR2 and nucleotide-binding oligomerization domain (NOD)-like receptors on DCs, acts as a rate-limiting factor in determining the initiation and mounting of the robust immune response. It underscores the need for ``decoding'' these multiple receptor interactions. In this study, we demonstrate that TLR2 and NOD receptors cooperatively regulate functional maturation of human DCs. Intriguingly, synergistic stimulation of TLR2 and NOD receptors renders enhanced refractoriness to TGF-beta- or CTLA-4-mediated impairment of human DC maturation. Signaling perturbation data suggest that NOTCH1-PI3K signaling dynamics assume critical importance in TLR2- and NOD receptor-mediated surmounting of CTLA-4- and TGF-beta -suppressed maturation of human DCs. Interestingly, the NOTCH1-PI3K signaling axis holds the capacity to regulate DC functions by virtue of PKC delta-MAPK-dependent activation of NF-kappa B. This study provides mechanistic and functional insights into TLR2-and NOD receptor-mediated regulation of DC functions and unravels NOTCH1-PI3K as a signaling cohort for TLR2 and NOD receptors. These findings serve in building a conceptual foundation for the design of improved strategies for adjuvants and immunotherapies against infectious diseases.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sum capacity on a symbol-synchronous CDMA system having processing gain N and supporting K power constrained users is achieved by employing any set of N orthogonal sequences if a few users are allowed to signal along multiple dimensions. Analogously, the minimum received power (energy-per-chip) on the symbolsynchronous CDMA system supporting K users that demand specified data rates is attained by employing any set of N orthogonal sequences. At most (N - 1) users need to be split and if there are no oversized users, these split users need to signal only in two dimensions each. These results show that sum capacity or minimum sum power can be achieved with minimal downlink signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

India already has earned the dubious distinction of being one of the countries with the highest incidence of tuberculosis (TB). The conventional control measures have had little impact on the relentless march of the TB epidemic. Potential solutions to this problem include the development of new drugs and an effective TB vaccine. In this perspective, identification of the mycobacterial components that have important role(s) in the establishment of the infection assumes crucial importance. Mycobacterium tuberculosis is an intracellular pathogen and it resides inside the macrophage, which is considered to be the most important component of the immune system. M. tuberculosis possesses two highly polymorphic sets of genes called the PE and PPE families. These unique families of proteins account for about 10% of the mycobacterial genome and have drawn considerable interest from different schools of M. tuberculosis researchers across the globe. In this review, we discuss the importance of these proteins in the regulation of dendritic cell and macrophage immune-effector functions, as well as the relevance of these proteins in the clinical manifestation of TB. This information may be helpful to better understand the immunological importance of PE/PPE proteins and their roles in mycobacterial virulence. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the many different objectives of large scale structural genomics projects are expanding the protein fold space, enhancing understanding of a model or disease-related organism, and providing foundations for structure-based drug discovery. Systematic analysis of protein structures of Mycobacterium tuberculosis has been ongoing towards meeting some of these objectives. Indian participation in these efforts has been enthusiastic and substantial. The proteins of M. tuberculosis chosen for structural analysis by the Indian groups span almost all the functional categories. The structures determined by the Indian groups have led to significant improvement in the biochemical knowledge on these proteins and consequently have started providing useful insights into the biology of M. tuberculosis. Moreover, these structures form starting points for inhibitor design studies, early results of which are encouraging. The progress made by Indian structural biologists in determining structures of M. tuberculosis proteins is highlighted in this review. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-domain proteins have many advantages with respect to stability and folding inside cells. Here we attempt to understand the intricate relationship between the domain-domain interactions and the stability of domains in isolation. We provide quantitative treatment and proof for prevailing intuitive ideas on the strategies employed by nature to stabilize otherwise unstable domains. We find that domains incapable of independent stability are stabilized by favourable interactions with tethered domains in the multi-domain context. Stability of such folds to exist independently is optimized by evolution. Specific residue mutations in the sites equivalent to inter-domain interface enhance the overall solvation, thereby stabilizing these domain folds independently. A few naturally occurring variants at these sites alter communication between domains and affect stability leading to disease manifestation. Our analysis provides safe guidelines for mutagenesis which have attractive applications in obtaining stable fragments and domain constructs essential for structural studies by crystallography and NMR.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innate immunity recognizes and resists various pathogens; however, the mechanisms regulating pathogen versus non-pathogen discrimination are still imprecisely understood. Here, we demonstrate that pathogen-specific activation of TLR2 upon infection with Mycobacterium bovis BCG, in comparison with other pathogenic microbes, including Salmonella typhimurium and Staphylococcus aureus, programs macrophages for robust up-regulation of signaling cohorts of Wnt-beta-catenin signaling. Signaling perturbations or genetic approaches suggest that infection-mediated stimulation of Wnt-beta-catenin is vital for activation of Notch1 signaling. Interestingly, inducible NOS (iNOS) activity is pivotal for TLR2-mediated activation of Wnt-beta-catenin signaling as iNOS(-/-) mice demonstrated compromised ability to trigger activation of Wnt-beta-catenin signaling as well as Notch1-mediated cellular responses. Intriguingly, TLR2-driven integration of iNOS/NO, Wnt-beta-catenin, and Notch1 signaling contributes to its capacity to regulate the battery of genes associated with T(Reg) cell lineage commitment. These findings reveal a role for differential stimulation of TLR2 in deciding the strength of Wnt-beta-catenin signaling, which together with signals from Notch1 contributes toward the modulation of a defined set of effector functions in macrophages and thus establishes a conceptual framework for the development of novel therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The covalent linkage between the side-chain and the backbone nitrogen atom of proline leads to the formation of the five-membered pyrrolidine ring and hence restriction of the backbone torsional angle phi to values of -60 degrees +/- 30 degrees for the L-proline. Diproline segments constitute a chain fragment with considerably reduced conformational choices. In the current study, the conformational states for the diproline segment ((L)Pro-(L)Pro) found in proteins has been investigated with an emphasis on the cis and trans states for the Pro-Pro peptide bond. The occurrence of diproline segments in turns and other secondary structures has been studied and compared to that of Xaa-Pro-Yaa segments in proteins which gives us a better understanding on the restriction imposed on other residues by the diproline segment and the single proline residue. The study indicates that P(II)-P(II) and P(II)-alpha are the most favorable conformational states for the diproline segment. The analysis on Xaa-Pro-Yaa sequences reveals that the XaaPro peptide bond exists preferably as the trans conformer rather than the cis conformer. The present study may lead to a better understanding of the behavior of proline occurring in diproline segments which can facilitate various designed diproline-based synthetic templates for biological and structural studies. (C) 2011 Wiley Periodicals, Inc. Biopolymers 97: 54-64, 2012.