962 resultados para Brightness Temperature Difference (BTD)
Room temperature gas sensing properties of ultrathin carbon nanotubes by surfactant-free dip coating
Resumo:
Large-scale production of reliable carbon nanotubes (CNTs) based gas sensors involves the development of scalable and reliable processes for the fabrication of films with controlled morphology. Here, we report for the first time on highly scalable, ultrathin CNT films, to be employed as conductometric sensors for NO2 and NH3 detection at room temperature. The sensing films are produced by dip coating using dissolved CNTs in chlorosulfonic acid as a working solution. This surfactant-free approach does not require any post-treatment for the removal of dispersants or any CNTs functionalization, thus promising high quality CNTs for better sensitivity and low production costs. The effect of CNT film thickness and defect density on the gas sensing properties has been investigated. Detection limits of 1 ppm for NO2 and 7 ppm for NH3 have been achieved at room temperature. The experimental results reveal that defect density and film thickness can be controlled to optimize the sensing response. Gas desorption has been accelerated by continuous in-situ UV irradiation.
Resumo:
A study of the effect of N2 reservoir temperature on the small-signal gain in a downstream-mixing 16 μm CO2-N2 GDL is presented. It is shown that the small-signal gain decreases with the increase of N2 reservoir temperature. The conditions for reversing this trend are discussed and the results are presented in the form of graphs.
Resumo:
Recently, second-generation (non-vegetable oil) feedstocks for biodiesel production are receiving significant attention due to the cost and social effects connected with utilising food products for the production of energy products. The Beauty leaf tree (Calophyllum inophyllum) is a potential source of non-edible oil for producing second-generation biodiesel because of its suitability for production in an extensive variety of atmospheric condition, easy cultivation, high fruit production rate, and the high oil content in the seed. In this study, oil was extracted from Beauty leaf tree seeds through three different oil extraction methods. The important physical and chemical properties of these extracted Beauty leaf oils were experimentally analysed and compared with other commercially available vegetable oils. Biodiesel was produced using a two-stage esterification process combining of an acid catalysed pre-esterification process and an alkali catalysed transesterification process. Fatty acid methyl ester (FAME) profiles and important physicochemical properties were experimentally measured and estimated using equations based on the FAME analysis. The quality of Beauty leaf biodiesels was assessed and compared with commercially available biodiesels through multivariate data analysis using PROMETHEE-GAIA software. The results show that mechanical extraction using a screw press produces oil at a low cost, however, results in low oil yields compared with chemical oil extraction. High pressure and temperature in the extraction process increase oil extraction performance. On the contrary, this process increases the free fatty acid content in the oil. A clear difference was found in the physical properties of Beauty leaf oils, which eventually affected the oil to biodiesel conversion process. However, Beauty leaf oils methyl esters (biodiesel) were very consistent physicochemical properties and able to meet almost all indicators of biodiesel standards. Overall this study found that Beauty leaf is a suitable feedstock for producing second-generation biodiesel in commercial scale. Therefore, the findings of this study are expected to serve as the basis for further development of Beauty leaf as a feedstock for industrial scale second-generation biodiesel production.
Resumo:
A novel solid-solution precursor method for the preparation of fine-particle cobaltites at low temperatures has been described. The precursors, hydrazinium metal hydrazine carboxylate hydrates, N2H5M1/3Co2/3(N2H3COO)3 · H2O, where M = Mg, Mn, Fe, Co, Ni, and Zn, decompose in air <250°C to yield corresponding metal cobaltites, MCo2O4. Formation of cobaltites has been confirmed by thermogravimetry (TG) weight loss, IR, and X-ray diffraction. Combustion of the precursor in air yields fine-particle cobaltites with surface areas in the range of 12–115 m2g−1 and particle sizes of 1–40 μm. Low decomposition temperatures of the precursors accompanied by the evolution of large amounts of gases appear to control the particle size of the cobaltites.
Resumo:
D.C. conductivity behaviour of a variety of chalcogenide glasses have been analysed using ln σ vs Image plots as suggested in the multiphonon assisted polaron hopping model of Triberis and Friedman. The agreement with the model is very satisfactory and further analysis of the model using c.
Resumo:
The dielectric measurements on diglycine sulphate in the temperature range 5-400 K, show that it is a normal dielectric, unlike triglycine sulphate which is a ferroelectric. The difference in the dielectric behavior of these two glycine sulphates has been explained on the basis of certain structural features derived from a study of their vibration spectra.
Resumo:
Glasses show very interesting behavior well below the glass transition temperature. Inspite of various experimental observations, even simple quantitative explanations relating these relaxation phenomena to structural properties are absent. In this paper we have tried to point out a phenomenological approach to this problem by identifying certain parameters which we think can be used to characterize these relaxations.
Resumo:
The intensity of inelastically scattered electrons measured by electron energy loss spectroscopy has been employed to monitor the surface conductivity of YBa2Cu3O6.9 as a function of temperature. The study shows a drastic change in surface conductivity precedes the superconducting transition at 90K. The increase in surface conductivity is accompanied by the formation of dimerized holes in the oxygen derived p-band. This phenomenon is not observed in the non-superconducting YBa2Cu3O6.2.
Resumo:
Abstract Sceliodes cordalis, eggfruit caterpillar, is an important pest of eggplant in Australia but little information was available on its biology. This study was conducted to determine the effect of temperature on the development on eggplant of eggs, larvae and pupae. Insects were reared at five constant temperatures from 20.5°C to 30.5°C with a 12:12 L : D photoperiod and the thermal summation model was fitted to the developmental rate data. Developmental zeroes and thermal constants of 11.22°C and 61.32 day-degrees for eggs, 12.03°C and 179.60 day-degrees for larvae, and 14.43°C and 107.03 day-degrees for pupae were determined. Several larvae reared at 20.5°C entered diapause.
Resumo:
Medium bedding sand which is commonly available in coastal sedimentary deposits, and a marine polychaete-worm species from Moreton Bay recently classified as Perinereis helleri (Nereididae), were deployed in a simple low-maintenance sand filter design that potentially has application at large scale. Previous work had shown that this physical and biological combination can provide a new option for saline wastewater treatment, since the worms help to prevent sand filter blocking with organic debris and offer a profitable by-product. To test the application of this new concept in a commercial environment, six 1.84 m2 Polychaete-assisted sand filters were experimentally tested for their ability to treat wastewater from a semi-intensive prawn culture pond. Polychaetes produced exclusively on the waste nutrients that collected in these gravity-driven sand filters were assessed for their production levels and nutritional contents. Water parameters studied included temperature, salinity, pH, dissolved oxygen (DO), oxidation/ reduction potential (redox), suspended solids, chlorophyll a, biological oxygen demand (BOD), and common forms of nitrogen and phosphorus. Pond water which had percolated through the sand bed had significantly lower pH, DO and redox levels compared with inflow water. Suspended solids and chlorophyll a levels were consistently more than halved by the process. Reductions in BOD appeared dependant on regular subsurface flows. Only marginal reductions in total nitrogen and phosphorus were documented, but their forms were altered in a potentially useful way: dissolved forms (ammonia and orthophosphate) were generated by the process, and this remineralisation also seemed to be accentuated by intermittent flow patterns. Flow rates of approximately 1,500 L m-2 d-1 were achieved suggesting that a 1 ha polychaete bed of this nature could similarly treat the discharge from a 10 ha semi-intensive prawn farm. Sixteen weeks after stocking sand beds with one-month-old P. helleri, over 3.6 kg of polychaete biomass (wet weight) was recovered from the trial. Production on a sand bed area basis was 328 g m-2. Similar (P>0.05) overall biomass production was found for the two stocking densities tested (2000 and 6000 m-2; n = 3), but survival was lower and more worms were graded as small (<0.6 g) when produced at the higher density (28.2 ± 1.5 % and approx. 88 %, respectively) compared with the lower density (46.8 ± 4.4 % and approx. 76 %, respectively). When considered on a weight for weight basis, about half of the worm biomass produced was generally suitable for use as bait. The nutritional contents of the worms harvested were analysed for different stocking densities and graded sizes. These factors did not significantly affect their percentages of dry matter (DM) (18.23 ± 0.57 %), ash (19.77 ± 0.80 % of DM) or gross energy 19.39 ± 0.29 MJ kg-1 DM) (n = 12). Although stocking density did not affect the worms’ nitrogen and phosphorus contents, small worms had a higher mean proportion of nitrogen and phosphorus (10.57 ± 0.17 % and 0.70 ± 0.01 % of DM, respectively) than large worms (9.99 ± 0.12 % and 0.65 ± 0.01 % of DM, respectively) (n = 6). More lipid was present in large worms grown at the medium density (11.20 ± 0.19 %) compared with the high density (9.50 ± 0.31 %) and less was generally found in small worms (7.1-7.6 % of DM). Mean cholesterol and total phospholipid levels were 5.24 ± 0.15 mg g-1 and 13.66 ± 2.15 mg g-1 DM, respectively (n = 12). Of the specific phospholipids tested, phosphatidyl-serine or sphingomyelin were below detection limits (<0.05 mg g-1), whilst mean levels of phosphatidyl-ethanolamine, phosphatidyl-inositol, phosphatidyl-choline and lysophosphatidyl-choline were 6.89 ± 1.09, 0.89 ± 0.26, 4.04 ± 1.17 and 1.84 ± 0.37 mg g-1, respectively (n = 12). Culture density generally had a more pronounced effect on phospholipid contents than did size of worms. By contrast, worm size had a more pronounced effect on total fatty acid contents, with large worms containing significantly higher (P<0.001) levels on a DM basis (46.88 ± 2.46 mg g-1) than smaller worms (27.76 ± 1.28 mg g-1). A very broad range of fatty acids were detected with palmitic acid being the most heavily represented class (up to 14.23 ± 0.49 mg g-1 DM or 27.28 ± 0.22 % of total fatty acids). Other heavily represented classes included stearic acid (7.4-8.8 %), vaccenic acid (6.8-7.8 %), arachidonic acid (3.5-4.4 %), eicosapentaenoic acid (9.9-13.8 %) and docosenoic acid (5.7-7.0 %). Stocking density did not affect (P>0.05) the levels of amino acids present in polychaete DM, but there was generally less of each amino acid tested on a weight per weight basis in large worms than in small worms. This difference was significant (P<0.05) for the most heavily represented classes being glutamic acid (73-77 mg g-1), aspartic acid (50-54 mg g-1), and glycine (46-53 mg g-1). These results demonstrate how this polychaete species can be planted and sorted at harvest according to various strategies aimed at providing biomass with specific physical and nutritional qualities for different uses.
Resumo:
The unsteady laminar incompressible three-dimensional boundary layer flow and heat transfer on a flat plate with an attached cylinder have been studied when the free stream velocity components and wall temperature vary inversely as linear and quadratic functions of time, respectively. The governing semisimilar partial differential equations with three independent variables have been solved numerically using a quasilinear finite-difference scheme. The results indicate that the skin friction increases with parameter λ which characterizes the unsteadiness in the free stream velocity and the streamwise distance Image , but the heat transfer decreases. However, the skin friction and heat transfer are found to change little along Image . The effect of the Prandtl number on the heat transfer is found to be more pronounced when λ is small, whereas the effect of the dissipation parameter is more pronounced when λ is comparatively large.
Resumo:
MANY TRANSPORprTo cesses occur in nature and in industrial applications in which the transfer of heat is governed by the process of natural convection. Natural convection arises in fluids when the temperature changes cause density variations leading to buoyancy forces. An excellent review of natural convection flows has been given by Ede [I]. Recently, Minkowycz and Sparrow [2, 31, Cebeci [4], and Aziz and Na [S] have studied the steady, laminar, incompressible, natural convection flow over a vertical cylinder using a local nonsimilarity method, a finite-difference scheme, and an improved perturbation method, respectively. However, they did not take into account the effect ofaxial heat conduction for small Prandtl number. It is known that the axial heat conductioneffect becomesimportant for low-Prandtl-number fluids such as a liquid metal.
Resumo:
Phase separation resulting in a single-crystal-single-crystal transition accompanied by a polycrystalline phase following the dehydration of hydrated bimetallic sulfates [Na2Mn1.167(SO4)(2)S0.33O1.167 center dot 2H(2)O and K4Cd3-(SO4)(5)center dot 3H(2)O] has been investigated by in situ variable-temperature single-crystal X-ray diffraction. With two examples, we illustrate the possibility of generating structural frameworks following dehydration in bimetallic sulfates, which refer to the possible precursor phases at that temperature leading to the mineral formation. The room-temperature structure of Na2Mn1.167(SO4)(2)S0.33O1.167 center dot 2H(2)O is trigonal, space group R (3) over bar. On heating the crystal in situ on the diffractometer, the diffraction images display spherical spots and concentric rings suggesting phase separation, with the spherical spots getting indexed in a monoclinic space group, C2/c. The structure determination based on this data suggests the formation of Na2Mn(SO4)(2). However, the diffraction images from concentric rings could not be indexed. In the second example, the room-temperature structure is determined to be K4Cd3(SO4)(5)center dot 3H(2)O, crystallizing in a monoclinic space group, P2(1)/n. On heating the crystal in situ, the diffraction images collected also have both spherical spots and diffuse rings. The spherical spots could be indexed to a cubic crystal system, space group P2(1)3, and the structure is K4Cd3(SO4)(3). The possible mechanism for the phase transition in the dehydration regime resulting in this remarkable single-crystal to single-crystal transition with the appearance of a surrogate polycrystalline phase is proposed.
Resumo:
A novel low-temperature method of preparing bronzes of tungsten and vanadium and other reduced phases is reported.
Resumo:
Transition metal molybdates of the formulaAMoO4 whereA=Fe, Co or Ni exhibit a first-order phase transition between 670K–970K. An investigation of the lowtemperature (lt) and high-temperature (ht) phases by x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, magnetic susceptibility and other physical methods shows that the phase transition is associated with a valence change of the typeA 2++Mo6+αA 3++Mo5+ in the cases of iron and cobalt molybdates.