990 resultados para Boundary layer, lower


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The situation considered is that of a zonally symmetric model of the middle atmosphere subject to a given quasi-steady zonal force F̄, conceived to be the result of irreversible angular momentum transfer due to the upward propagation and breaking of Rossby and gravity waves together with any other dissipative eddy effects that may be relevant. The model's diabatic heating is assumed to have the qualitative character of a relaxation toward some radiatively determined temperature field. To the extent that the force F̄ may be regarded as given, and the extratropical angular momentum distribution is realistic, the extratropical diabatic mass flow across a given isentropic surface may be regarded as controlled exclusively by the F̄ distribution above that surface (implying control by the eddy dissipation above that surface and not, for instance, by the frequency of tropopause folding below). This “downward control” principle expresses a critical part of the dynamical chain of cause and effect governing the average rate at which photochemical products like ozone become available for folding into, or otherwise descending into, the extratropical troposphere. The dynamical facts expressed by the principle are also relevant, for instance, to understanding the seasonal-mean rate of upwelling of water vapor to the summer mesopause, and the interhemispheric differences in stratospheric tracer transport. The robustness of the principle is examined when F̄ is time-dependent. For a global-scale, zonally symmetric diabatic circulation with a Brewer-Dobson-like horizontal structure given by the second zonally symmetric Hough mode, with Rossby height HR = 13 km in an isothermal atmosphere with density scale height H = 7 km, the vertical partitioning of the unsteady part of the mass circulation caused by fluctuations in F̄ confined to a shallow layer LF̄ is always at least 84% downward. It is 90% downward when the force fluctuates sinusoidally on twice the radiative relaxation timescale and 95% if five times slower. The time-dependent adjustment when F̄ is changed suddenly is elucidated, extending the work of Dickinson (1968), when the atmosphere is unbounded above and below. Above the forcing, the adjustment is characterized by decay of the meridional mass circulation cell at a rate proportional to the radiative relaxation rate τr−1 divided by {1 + (4H2/HR2)}. This decay is related to the boundedness of the angular momentum that can be taken up by the finite mass of air above LF̄ without causing an ever-increasing departure from thermal wind balance. Below the forcing, the meridional mass circulation cell penetrates downward at a speed τr−1 HR2/H. For the second Hough mode, the time for downward penetration through one density scale height is about 6 days if the radiative relaxation time is 20 days, the latter being representative of the lower stratosphere. At any given altitude, a steady state is approached. The effect of a rigid lower boundary on the time-dependent adjustment is also considered. If a frictional planetary boundary layer is present then a steady state is ultimately approached everywhere, with the mass circulation extending downward from LF̄ and closing via the boundary layer. Satellite observations of temperature and ozone are used in conjunction with a radiative transfer scheme to estimate the altitudes from which the lower stratospheric diabatic vertical velocity is controlled by the effective F̄ in the real atmosphere. The data appear to indicate that about 80% of the effective control is usually exerted from below 40 km but with significant exceptions up to 70 km (in the high latitude southern hemispheric winter). The implications for numerical modelling of chemical transport are noted.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A convection-permitting local-area model was used to simulate a cold air outbreak crossing from the Norwegian Sea into the Atlantic Ocean near Scotland. A control model run based on an operational configuration of the Met Office UKV high-resolution (1.5 km grid spacing) NWP model was compared to satellite, aircraft and radar data. While the control model captured the large-scale features of the synoptic situation, it was not able to reproduce the shallow (<1.5 km) stratiform layer to the north of the open cellular convection. Liquid water paths were found to be too low in both the stratiform and convective cloud regions. Sensitivity analyses including a modified boundary-layer diagnosis to generate a more well-mixed boundary layer and inhibition of ice formation to lower temperatures improved cloud morphology and comparisons with observational data. Copyright © 2013 Royal Meteorological Society and British Crown Copyright, the Met Office

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There are significant discrepancies between observational datasets of Arctic sea ice concentrations covering the last three decades, which result in differences of over 20% in Arctic summer sea ice extent/area and 5%–10% in winter. Previous modeling studies have shown that idealized sea ice anomalies have the potential for making a substantial impact on climate. In this paper, this theory is further developed by performing a set of simulations using the third Hadley Centre Coupled Atmospheric Model (HadAM3). The model was driven with monthly climatologies of sea ice fractions derived from three of these records to investigate potential implications of sea ice inaccuracies for climate simulations. The standard sea ice climatology from the Met Office provided a control. This study focuses on the effects of actual inaccuracies of concentration retrievals, which vary spatially and are larger in summer than winter. The smaller sea ice discrepancies in winter have a much larger influence on climate than the much greater summer sea ice differences. High sensitivity to sea ice prescription was observed, even though no SST feedbacks were included. Significant effects on surface fields were observed in the Arctic, North Atlantic, and North Pacific. Arctic average surface air temperature anomalies in winter vary by 2.5°C, and locally exceed 12°C. Arctic mean sea level pressure varies by up to 5 mb locally. Anomalies extend to 45°N over North America and Eurasia but not to lower latitudes, and with limited changes in circulation above the boundary layer. No statistically significant impact on climate variability was simulated, in terms of the North Atlantic Oscillation. Results suggest that the uncertainty in summer sea ice prescription is not critical but that winter values require greater accuracy, with the caveats that the influences of ocean–sea ice feedbacks were not included in this study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a summary of the principal physical and optical properties of aerosol particles using the FAAM BAE-146 instrumented aircraft during ADRIEX between 27 August and 6 September 2004, augmented by sunphotometer, lidar and satellite retrievals. Observations of anthropogenic aerosol, principally from industrial sources, were concentrated over the northern Adriatic Sea and over the Po Valley close to the aerosol sources. An additional flight was also carried out over the Black Sea to compare east and west European pollution. Measurements show the single-scattering albedo of dry aerosol particles to vary considerably between 0.89 and 0.97 at a wavelength of 0.55 μm, with a campaign mean within the polluted lower free troposphere of 0.92. Although aerosol concentrations varied significantly from day to day and during individual days, the shape of the aerosol size distribution was relatively consistent through the experiment, with no detectable change observed over land and over sea. There is evidence to suggest that the pollution aerosol within the marine boundary layer was younger than that in the elevated layer. Trends in the aerosol volume distribution show consistency with multiple-site AERONET radiometric observations. The aerosol optical depths derived from aircraft measurements show a consistent bias to lower values than both the AERONET and lidar ground-based radiometric observations, differences which can be explained by local variations in the aerosol column loading and by some aircraft instrumental artefacts. Retrievals of the aerosol optical depth and fine-mode (<0.5 μm radius) fraction contribution to the optical depth using MODIS data from the Terra and Aqua satellites show a reasonable level of agreement with the AERONET and aircraft measurements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Urbanization related alterations to the surface energy balance impact urban warming (‘heat islands’), the growth of the boundary layer, and many other biophysical processes. Traditionally, in situ heat flux measures have been used to quantify such processes, but these typically represent only a small local-scale area within the heterogeneous urban environment. For this reason, remote sensing approaches are very attractive for elucidating more spatially representative information. Here we use hyperspectral imagery from a new airborne sensor, the Operative Modular Imaging Spectrometer (OMIS), along with a survey map and meteorological data, to derive the land cover information and surface parameters required to map spatial variations in turbulent sensible heat flux (QH). The results from two spatially-explicit flux retrieval methods which use contrasting approaches and, to a large degree, different input data are compared for a central urban area of Shanghai, China: (1) the Local-scale Urban Meteorological Parameterization Scheme (LUMPS) and (2) an Aerodynamic Resistance Method (ARM). Sensible heat fluxes are determined at the full 6 m spatial resolution of the OMIS sensor, and at lower resolutions via pixel aggregation and spatial averaging. At the 6 m spatial resolution, the sensible heat flux of rooftop dominated pixels exceeds that of roads, water and vegetated areas, with values peaking at ∼ 350 W m− 2, whilst the storage heat flux is greatest for road dominated pixels (peaking at around 420 W m− 2). We investigate the use of both OMIS-derived land surface temperatures made using a Temperature–Emissivity Separation (TES) approach, and land surface temperatures estimated from air temperature measures. Sensible heat flux differences from the two approaches over the entire 2 × 2 km study area are less than 30 W m− 2, suggesting that methods employing either strategy maybe practica1 when operated using low spatial resolution (e.g. 1 km) data. Due to the differing methodologies, direct comparisons between results obtained with the LUMPS and ARM methods are most sensibly made at reduced spatial scales. At 30 m spatial resolution, both approaches produce similar results, with the smallest difference being less than 15 W m− 2 in mean QH averaged over the entire study area. This is encouraging given the differing architecture and data requirements of the LUMPS and ARM methods. Furthermore, in terms of mean study QH, the results obtained by averaging the original 6 m spatial resolution LUMPS-derived QH values to 30 and 90 m spatial resolution are within ∼ 5 W m− 2 of those derived from averaging the original surface parameter maps prior to input into LUMPS, suggesting that that use of much lower spatial resolution spaceborne imagery data, for example from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is likely to be a practical solution for heat flux determination in urban areas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Airborne measurements within the urban mixing layer (360 m) over Greater London are used to quantify CO2 emissions at the meso-scale. Daytime CO2 fluxes, calculated by the Integrative Mass Boundary Layer (IMBL) method, ranged from 46 to 104 μmol CO2 m−2 s−1 for four days in October 2011. The day-to-day variability of IMBL fluxes is at the same order of magnitude as for surface eddy-covariance fluxes observed in central London. Compared to fluxes derived from emissions inventory, the IMBL method gives both lower (by −37%) and higher (by 19%) estimates. The sources of uncertainty of applying the IMBL method in urban areas are discussed and guidance for future studies is given.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Of all the various definitions of the polar cap boundary that have been used in the past, the most physically meaningful and significant is the boundary between open and closed field lines. Locating this boundary is very important as it defines which regions and phenomena are on open field lines and which are on closed. This usually has fundamental implications for the mechanisms invoked. Unfortunately, the open-closed boundary is usually very difficult to identify, particularly where it maps to an active reconnection site. This paper looks at the topological reconnection classes that can take place, both at the magnetopause and in the cross-tail current sheet and discusses the implications for identifying the open-closed boundary when reconnection is giving velocity filter dispersion of signatures. On the dayside, it is shown that the dayside boundary plasma sheet and low-latitude boundary layer precipitations are well explained as being on open field lines, energetic ions being present because of reflection of central plasma sheet ions off the two Alfvén waves launched by the reconnection site (the outer one of which is the magnetopause). This also explains otherwise anomalous features of the dayside convection pattern in the cusp region. On the nightside, similar considerations place the open-closed boundary somewhat poleward of the velocity-dispersed ion structures which are a signature of the plasma sheet boundary layer ion flows in the tail.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Combined optical and radar observations of two breakup-like auroral events near the polar cap boundary, within 74–76° MLAT and 1210 – 1240 UT (roughly 1540 – 1610 MLT) on 9 Jan. 1989 are reported. A two-component structure of the auroral phenomenon is indicated, with a local intensification of the pre-existing arc as well as a separate, tailward moving discrete auroral event on the poleward side of the background aurora, close to the reversal between well-defined zones of sunward and tailward ion flows. The all-sky TV observations do not indicate a connection between the two components, which also show different optical spectral composition. The 16 MLT background arc is located on sunward convecting field lines, as opposed to the 12–14 MLT auroral emission observed on this day. Although the magnetospheric plasma source (s) of the 16 MLT events are not easily identified from these ground-based data alone, it is suggested that the lower and higher latitude components, may map to the plasma sheet boundary layer and along open field lines to the magnetopause boundary, respectively. The events occur at the time of enhancements of westward ionospheric ion flow and corresponding eastward electrojet current south of 74° MLAT. Thus, they seem to be very significant events, involving periodic (10 min period), tailward moving filaments of field-aligned current/discrete auroral emission at the 16 MLT polar cap boundary.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mechanism by which the atmospheric boundary layer reduces the intensity of mid-latitude cyclones is investigated. It is demonstrated that two alternative theories, Ekman pumping and the baroclinic potential vorticity (PV) mechanism, in fact act in union to maximize the spin-down. Ekman pumping aids the ventilation of PV from the boundary layer, and shapes the resulting PV anomaly into one of increased static stability. PV inversion techniques are used to demonstrate how this anomaly reduces the coupling between the upper- and lower-levels within the cyclone, reducing the growth rate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Clouds and associated precipitation are the largest source of uncertainty in current weather and future climate simulations. Observations of the microphysical, dynamical and radiative processes that act at cloud scales are needed to improve our understanding of clouds. The rapid expansion of ground-based super-sites and the availability of continuous profiling and scanning multi-frequency radar observations at 35 and 94 GHz have significantly improved our ability to probe the internal structure of clouds in high temporal-spatial resolution, and to retrieve quantitative cloud and precipitation properties. However, there are still gaps in our ability to probe clouds due to large uncertainties in the retrievals. The present work discusses the potential of G band (frequency between 110 and 300 GHz) Doppler radars in combination with lower frequencies to further improve the retrievals of microphysical properties. Our results show that, thanks to a larger dynamic range in dual-wavelength reflectivity, dual-wavelength attenuation and dual-wavelength Doppler velocity (with respect to a Rayleigh reference), the inclusion of frequencies in the G band can significantly improve current profiling capabilities in three key areas: boundary layer clouds, cirrus and mid-level ice clouds, and precipitating snow.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000–2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October–January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo–Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of secondary inorganic aerosol are suppressed in the models because relative humidity (RH) is biased far too low in the boundary layer and thus foggy conditions are poorly represented in current models, the nitrate aerosol is either missing or inadequately accounted for, and emissions from agricultural waste burning and biofuel usage are too low in the emission inventories. These common problems and possible causes found in multiple models point out directions for future model improvements in this important region.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Jülich Observatory for Cloud Evolution (JOYCE), located at Forschungszentrum Jülich in the most western part of Germany, is a recently established platform for cloud research. The main objective of JOYCE is to provide observations, which improve our understanding of the cloudy boundary layer in a midlatitude environment. Continuous and temporally highly resolved measurements that are specifically suited to characterize the diurnal cycle of water vapor, stability, and turbulence in the lower troposphere are performed with a special focus on atmosphere–surface interaction. In addition, instruments are set up to measure the micro- and macrophysical properties of clouds in detail and how they interact with different boundary layer processes and the large-scale synoptic situation. For this, JOYCE is equipped with an array of state-of-the-art active and passive remote sensing and in situ instruments, which are briefly described in this scientific overview. As an example, a 24-h time series of the evolution of a typical cumulus cloud-topped boundary layer is analyzed with respect to stability, turbulence, and cloud properties. Additionally, we present longer-term statistics, which can be used to elucidate the diurnal cycle of water vapor, drizzle formation through autoconversion, and warm versus cold rain precipitation formation. Both case studies and long-term observations are important for improving the representation of clouds in climate and numerical weather prediction models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Eddy covariance has been used in urban areas to evaluate the net exchange of CO2 between the surface and the atmosphere. Typically, only the vertical flux is measured at a height 2–3 times that of the local roughness elements; however, under conditions of relatively low instability, CO2 may accumulate in the airspace below the measurement height. This can result in inaccurate emissions estimates if the accumulated CO2 drains away or is flushed upwards during thermal expansion of the boundary layer. Some studies apply a single height storage correction; however, this requires the assumption that the response of the CO2 concentration profile to forcing is constant with height. Here a full seasonal cycle (7th June 2012 to 3rd June 2013) of single height CO2 storage data calculated from concentrations measured at 10 Hz by open path gas analyser are compared to a data set calculated from a concurrent switched vertical profile measured (2 Hz, closed path gas analyser) at 10 heights within and above a street canyon in central London. The assumption required for the former storage determination is shown to be invalid. For approximately regular street canyons at least one other measurement is required. Continuous measurements at fewer locations are shown to be preferable to a spatially dense, switched profile, as temporal interpolation is ineffective. The majority of the spectral energy of the CO2 storage time series was found to be between 0.001 and 0.2 Hz (500 and 5 s respectively); however, sampling frequencies of 2 Hz and below still result in significantly lower CO2 storage values. An empirical method of correcting CO2 storage values from under-sampled time series is proposed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spatial and temporal fluctuations in the concentration field from an ensemble of continuous point-source releases in a regular building array are analyzed from data generated by direct numerical simulations. The release is of a passive scalar under conditions of neutral stability. Results are related to the underlying flow structure by contrasting data for an imposed wind direction of 0 deg and 45 deg relative to the buildings. Furthermore, the effects of distance from the source and vicinity to the plume centreline on the spatial and temporal variability are documented. The general picture that emerges is that this particular geometry splits the flow domain into segments (e.g. “streets” and “intersections”) in each of which the air is, to a first approximation, well mixed. Notable exceptions to this general rule include regions close to the source, near the plume edge, and in unobstructed channels when the flow is aligned. In the oblique (45 deg) case the strongly three-dimensional nature of the flow enhances mixing of a scalar within the canopy leading to reduced temporal and spatial concentration fluctuations within the plume core. These fluctuations are in general larger for the parallel flow (0 deg) case, especially so in the long unobstructed channels. Due to the more complex flow structure in the canyon-type streets behind buildings, fluctuations are lower than in the open channels, though still substantially larger than for oblique flow. These results are relevant to the formulation of simple models for dispersion in urban areas and to the quantification of the uncertainties in their predictions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The relative contribution of resolved and parameterized surface drag towards balancing the atmospheric angular momentum flux convergence (AMFC), and their sensitivity to horizontal resolution and parameterization, are investigated in an atmospheric model. This sensitivity can be difficult to elucidate in free-running climate models, in which the AMFC varies with changing climatologies and, as a result, the relative contributions of surface terms balancing the AMFC also vary. While the sensitivity question has previously been addressed using short-range forecasts, we demonstrate that a nudging framework is an effective method for constraining the AMFC. The Met Office Unified Model is integrated at three horizontal resolutions ranging from 130 km (N96) to 25 km (N512) while relaxing the model’s wind and temperature fields towards the ERAinterim reanalysis within the altitude regions of maximum AMFC. This method is validated against short range forecasts and good agreement is found. These experiments are then used to assess the fidelity of the exchange between parameterized and resolved orographic torques with changes in horizontal resolution. Although the parameterized orographic torque reduces substantially with increasing horizontal resolution, there is little change in resolved orographic torque over 20N to 50N. The tendencies produced by the nudging routine indicate that the additional drag at lower horizontal resolution is excessive. When parameterized orographic blocking is removed at the coarsest of these resolutions, there is a lack of compensation, and even compensation of the opposite sense, by the boundary layer and resolved torques which is particularly pronounced over 20N to 50N. This study demonstrates that there is strong sensitivity in the behaviour of the resolved and parameterized surface drag over this region.