921 resultados para Bookkeeping machines.
Resumo:
It is known that for the open shop scheduling problem to minimize the makespan there exists no polynomial-time heuristic algorithm that guarantees a worst-case performance ratio better than 5/4, unless P6≠NP. However, this result holds only if the instance of the problem contains jobs consisting of at least three operations. This paper considers the open shop scheduling problem, provided that each job consists of at most two operations, one of which is to be processed on one of the m⩾2 machines, while the other operation must be performed on the bottleneck machine, the same for all jobs. For this NP-hard problem we present a heuristic algorithm and show that its worst-case performance ratio is 5/4.
Resumo:
We consider the problem of scheduling independent jobs on two machines in an open shop, a job shop and a flow shop environment. Both machines are batching machines, which means that several operations can be combined into a batch and processed simultaneously on a machine. The batch processing time is the maximum processing time of operations in the batch, and all operations in a batch complete at the same time. Such a situation may occur, for instance, during the final testing stage of circuit board manufacturing, where burn-in operations are performed in ovens. We consider cases in which there is no restriction on the size of a batch on a machine, and in which a machine can process only a bounded number of operations in one batch. For most of the possible combinations of restrictions, we establish the complexity status of the problem.
Resumo:
This paper considers the problem of sequencing n jobs in a three-machine shop with the objective of minimising the maximum completion time. The shop consists of three machines, M1,M2 and M_{3}. A job is first processed on M1 and then is assigned either the route (M2,M_{3}) or the route (M_{3},M2). Thus, for our model the processing route is given by a partial order of machines, as opposed to the linear order of machines for a job shop, or to an arbitrary sequence of machines for an open shop. The main result is on O(nlog n) time heuristic, which generates a schedule with the makespan that is at most 5/3 times the optimum value.
Resumo:
We study a two-machine open shop scheduling problem, in which the machines are not continuously available for processing. No preemption is allowed in the processing of any operation. The objective is to minimize the makespan. We consider approximability issues of the problem with more than one non-availability intervals and present an approximation algorithm with a worst-case ratio of 4/3 for the problem with a single non-availability interval.
Resumo:
We study a two-machine flow shop scheduling problem with no-wait in process, in which one of the machines is not available during a specified time interval. We consider three scenarios of handing the operation affected by the nonavailability interval. Its processing may (i) start from scratch after the interval, or (ii) be resumed from the point of interruption, or (iii) be partially restarted after the interval. The objective is to minimize the makespan. We present an approximation algorithm that for all these scenarios delivers a worst-case ratio of 3/2. For the second scenario, we offer a 4/3-approximation algorithm.
Resumo:
The paper considers the flow shop scheduling problems to minimize the makespan, provided that an individual precedence relation is specified on each machine. A fairly complete complexity classification of problems with two and three machines is obtained.