954 resultados para Bochner tensor
Resumo:
In schizophrenic psychoses, structural and functional alterations of the amygdala have been demonstrated by several neuroimaging studies. However, postmortem examinations on the brains of schizophrenics did not confirm the volume changes reported by volumetric magnetic resonance imaging (MRI) studies. In order to address these contradictory findings and to further elucidate the possibly underlying pathophysiological process of the amygdala, we employed a trimodal MRI design including high-resolution volumetry, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI) in a sample of 14 schizophrenic patients and 14 matched controls. Three-dimensional MRI volumetry revealed a significant reduction of amygdala raw volumes in the patient group, while amygdala volumes normalized for intracranial volume did not differ between the two groups. The regional diffusional anisotropy of the amygdala, expressed as inter-voxel coherence (COH), showed a marked and significant reduction in schizophrenics. Assessment of qMTI parameters yielded significant group differences for the T2 time of the bound proton pool and the T1 time of the free proton pool, while the semi-quantitative magnetization transfer ratio (MTR) did not differ between the groups. The application of multimodal MRI protocols is diagnostically relevant for the differentiation between schizophrenic patients and controls and provides a new strategy for the detection and characterization of subtle structural alterations in defined regions of the living brain.
Resumo:
Postmortem examinations and magnetic resonance imaging (MRI) studies suggest involvement of the entorhinal cortex (EC) in schizophrenic psychoses. However, the extent and nature of the possible pathogenetical process underlying the observed alterations of this limbic key region for processing of multimodal sensory information remains unclear. Three-dimensional high-resolution MRI volumetry and evaluation of the regional diffusional anisotropy based on diffusion tensor imaging (DTI) were performed on the EC of 15 paranoid schizophrenic patients and 15 closely matched control subjects. In schizophrenic patients, EC volumes showed a slight, but not significant, decrease. However, the anisotropy values, expressed as inter-voxel coherences (COH), were found to be significantly decreased by 17.9% (right side) and 12.5% (left side), respectively, in schizophrenics. Reduction of entorhinal diffusional anisotropy can be hypothesized to be functionally related to disturbances in the perforant path, the principal efferent EC fiber tract supplying the limbic system with neuronal input from multimodal association centers. Combinations of different MRI modalities are a promising approach for the detection and characterization of subtle brain tissue alterations.
Resumo:
Dysfunctions of the hippocampus have been suggested to be related to schizophrenia, and reduced connectivity with other brain regions may be a key for the pathophysiology. The aim of this study was to investigate the effect of white matter anomalies in the hippocampus, as a sign of altered connectivity, on the brain electrical activity. We investigated seven first episode schizophrenic patients and seven age, gender and education-matched controls with diffusion tensor imaging and resting EEG. Fractional anisotropy was computed based on diffusion tensor imaging data for the right and left hippocampus for both groups. No group differences were found in hippocampal fractional anisotropy, EEG spectral power and topography. However a significant correlation was found between more anterior alpha activity and lower fractional anisotropy of both hippocampi in schizophrenics, but not in controls. More anterior alpha activity has been described in schizophrenia. We conclude that this feature might depict a group of schizophrenic patients with reduced hippocampal connectivity.
Resumo:
SUMMARY: Multimodal imaging was performed in Rasmussen Encephalitis (RE) during episodes of complex-partial and focal motor status epilepticus including independent component analysis of BOLD-fMRI, arterial spin labeling perfusion imaging and diffusion tensor imaging. The active epileptic network and topographically independent brain areas showed regional hyperperfusion and progressive atrophy. The results suggest that hyperperfusion outside of the epileptic network represent active inflammation in RE and the imaging protocol presented here, allows assessing thereby the disease activity non-invasively.
Resumo:
Volcanoes are the surficial expressions of complex pathways that vent magma and gasses generated deep in the Earth. Geophysical data record at least the partial history of magma and gas movement in the conduit and venting to the atmosphere. This work focuses on developing a more comprehensive understanding of explosive degassing at Fuego volcano, Guatemala through observations and analysis of geophysical data collected in 2005 – 2009. A pattern of eruptive activity was observed during 2005 – 2007 and quantified with seismic and infrasound, satellite thermal and gas measurements, and lava flow lengths. Eruptive styles are related to variable magma flux and accumulation of gas. Explosive degassing was recorded on broadband seismic and infrasound sensors in 2008 and 2009. Explosion energy partitioning between the ground and the atmosphere shows an increase in acoustic energy from 2008 to 2009, indicating a shift toward increased gas pressure in the conduit. Very-long-period (VLP) seismic signals are associated with the strongest explosions recorded in 2009 and waveform modeling in the 10 – 30 s band produces a best-fit source location 300 m west and 300 m below the summit crater. The calculated moment tensor indicates a volumetric source, which is modeled as a dike feeding a SW-dipping (35°) sill. The sill is the dominant component and its projection to the surface nearly intersects the summit crater. The deformation history of the sill is interpreted as: 1) an initial inflation due to pressurization, followed by 2) a rapid deflation as overpressure is explosively release, and finally 3) a reinflation as fresh magma flows into the sill and degasses. Tilt signals are derived from the horizontal components of the seismometer and show repetitive inflation deflation cycles with a 20 minute period coincident with strong explosions. These cycles represent the pressurization of the shallow conduit and explosive venting of overpressure that develops beneath a partially crystallized plug of magma. The energy released during the strong explosions has allowed for imaging of Fuego’s shallow conduit, which appears to have migrated west of the summit crater. In summary, Fuego is becoming more gas charged and its summit centered vent is shifting to the west - serious hazard consequences are likely.
Resumo:
BACKGROUND: Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of glycan-binding inhibitory receptors, and among them, Siglec-8 is selectively expressed on human eosinophils, basophils, and mast cells. On eosinophils, Siglec-8 engagement induces apoptosis, but its function on mast cells is unknown. OBJECTIVE: We sought to study the effect of Siglec-8 engagement on human mast cell survival and mediator release responses. METHODS: Human mast cells were generated from CD34+ precursors. Apoptosis was studied by using flow cytometry. Mast cell mediator release or human lung airway smooth muscle contraction was initiated by FcepsilonRI cross-linking with or without preincubation with Siglec-8 or control antibodies, and release of mediators was analyzed along with Ca++ flux. RBL-2H3 cells transfected with normal and mutated forms of Siglec-8 were used to study how Siglec-8 engagement alters mediator release. RESULTS: Siglec-8 engagement failed to induce human mast cell apoptosis. However, preincubation with Siglec-8 mAbs significantly (P < .05) inhibited FcepsilonRI-dependent histamine and prostaglandin D(2) release, Ca++ flux, and anti-IgE-evoked contractions of human bronchial rings. In contrast, release of IL-8 was not inhibited. Siglec-8 ligation was also shown to inhibit beta-hexosaminidase release and Ca++ flux triggered through FcepsilonRI in RBL-2H3 cells transfected with full-length human Siglec-8 but not in cells transfected with Siglec-8 containing a tyrosine to phenylalanine point mutation in the membrane-proximal immunoreceptor tyrosine-based inhibitory motif domain. CONCLUSION: These data represent the first reported inhibitory effects of Siglec engagement on human mast cells.
Resumo:
Siglecs are cell-surface proteins found primarily on hematopoietic cells. By definition, they are members of the immunoglobulin gene super-family and bind sialic acid. Most contain cytoplasmic tyrosine motifs implicated in cell signaling. This review will first summarize characteristics common and unique to Siglecs, followed by a discussion of each human Siglec in numerical order, mentioning in turn its closest murine ortholog or paralog. Each section will describe its pattern of cellular expression, latest known immune functions, ligands, and signaling pathways, with the focus being predominantly on CD33-related Siglecs. Potential clinical and therapeutic implications of each Siglec will also be covered.
Resumo:
BACKGROUND: Hypereosinophilic syndrome (HES) is a heterogeneous group of rare disorders defined by persistent blood eosinophilia > or =1.5 x 10(9)/L, absence of a secondary cause, and evidence of eosinophil-associated pathology. With the exception of a recent multicenter trial of mepolizumab (anti-IL-5 mAb), published therapeutic experience has been restricted to case reports and small case series. OBJECTIVE: The purpose of the study was to collect and summarize baseline demographic, clinical, and laboratory characteristics in a large, diverse cohort of patients with HES and to review responses to treatment with conventional and novel therapies. METHODS: Clinical and laboratory data from 188 patients with HES, seen between January 2001 and December 2006 at 11 institutions in the United States and Europe, were collected retrospectively by chart review. RESULTS: Eighteen of 161 patients (11%) tested were Fip1-like 1-platelet-derived growth factor receptor alpha (FIP1L1-PDGFRA) mutation-positive, and 29 of 168 patients tested (17%) had a demonstrable aberrant or clonal T-cell population. Corticosteroid monotherapy induced complete or partial responses at 1 month in 85% (120/141) of patients with most remaining on maintenance doses (median, 10 mg prednisone equivalent daily for 2 months to 20 years). Hydroxyurea and IFN-alpha (used in 64 and 46 patients, respectively) were also effective, but their use was limited by toxicity. Imatinib (used in 68 patients) was more effective in patients with the FIP1L1-PDGFRA mutation (88%) than in those without (23%; P < .001). CONCLUSION: This study, the largest clinical analysis of patients with HES to date, not only provides useful information for clinicians but also should stimulate prospective trials to optimize treatment of HES.
Resumo:
BACKGROUND: Specificities for carbohydrate IgG antibodies, thought to be predominantly of the IgG2 subclass, have never been broadly examined in healthy human subjects. OBJECTIVE: To examine commercial intravenous immunoglobulin (IVIG) preparations for their ability to recognize a wide range of glycans and to determine the contribution of IgG2 to the binding pattern observed. METHODS: We used a glycan microarray to evaluate IVIG preparations and a control mix of similar proportions of human myeloma IgG1 and IgG2 for binding to 377 glycans, courtesy of the Consortium for Functional Glycomics Core H. Glycans recognized were categorized using public databases for their likely cellular sources. IgG2 was depleted from IVIG by using immunoaffinity chromatography, and depletion was confirmed by using nephelometry and surface plasmon resonance. RESULTS: Nearly half of the glycans bound IgG. Some of the glycans with the greatest antibody binding can be found in structures of human pathogenic bacteria (eg, Streptococcus pneumoniae, Mycobacterium tuberculosis, Vibrio cholera) and nonpathogenic bacteria, including LPS and lipoteichoic acid, capsular polysaccharides, and exopolysaccharides. Surprisingly, depletion of IgG2 had only a modest effect on anticarbohydrate recognition patterns compared with the starting IVIG preparation. Little to no binding activity was detected to human endogenous glycans, including tumor-associated antigens. CONCLUSIONS: This novel, comprehensive analysis provides evidence that IVIG contains a much wider range than previously appreciated of anticarbohydrate IgG antibodies, including those recognizing both pathogenic and non-pathogen-associated prokaryotic glycans.
Resumo:
Siglec-8, the eighth member of the sialic acid-binding, immunoglobulin [Ig]-like lectin family, was initially discovered as a cell surface protein selectively expressed on human eosinophils. It is now know to also be expressed by mast cells and basophils. Siglec-8 engagement with specific antibodies causes apoptosis via caspase and mitochondrial-dependent pathways. For mast cells, inhibition of mediator release, but no apoptosis, is observed. Siglec-F is the closest mouse paralog to Siglec-8, and both selectively bind the sulfated glycan 6’-sulfo-sialyl Lewis X. Antibodies to Siglec-F reduce blood and tissue eosinophil numbers in vivo. This suggests that Siglec-8 may be a useful future therapeutic target for allergic and other eosinophilic disorders.
Resumo:
In schizophrenia there is a consistent epidemiological finding of a birth excess in winter and spring. Season of birth is thought to act as a proxy indicator for harmful environmental factors during foetal maturation. There is evidence that prenatal exposure to harmful environmental factors may trigger pathologic processes in the neurodevelopment, which subsequently increase the risk of schizophrenia. Since brain white matter alterations have repeatedly been found in schizophrenia, the objective of this study was to investigate whether white matter integrity was related to the season of birth in patients with schizophrenia. Thirty-four patients with schizophrenia and 33 healthy controls underwent diffusion tensor imaging. Differences in the fractional anisotropy maps of schizophrenia patients and healthy controls born in different seasons were analysed with tract-based spatial statistics. A significant main effect of season of birth and an interaction of group and season of birth showed that patients born in summer had significantly lower fractional anisotropy in widespread white matter regions than those born in the remainder of the year. Additionally, later age of schizophrenia onset was found in patients born in winter months. The current findings indicate a relationship of season of birth and white matter alterations in schizophrenia and consequently support the neurodevelopmental hypothesis of early pathological mechanisms in schizophrenia.
Resumo:
BACKGROUND: The origin of auditory hallucinations, which are one of the core symptoms of schizophrenia, is still a matter of debate. It has been hypothesized that alterations in connectivity between frontal and parietotemporal speech-related areas might contribute to the pathogenesis of auditory hallucinations. These networks are assumed to become dysfunctional during the generation and monitoring of inner speech. Magnetic resonance diffusion tensor imaging is a relatively new in vivo method to investigate the directionality of cortical white matter tracts. OBJECTIVE: To investigate, using diffusion tensor imaging, whether previously described abnormal activation patterns observed during auditory hallucinations relate to changes in structural interconnections between the frontal and parietotemporal speech-related areas. METHODS: A 1.5 T magnetic resonance scanner was used to acquire twelve 5-mm slices covering the Sylvian fissure. Fractional anisotropy was assessed in 13 patients prone to auditory hallucinations, in 13 patients without auditory hallucinations, and in 13 healthy control subjects. Structural magnetic resonance imaging was conducted in the same session. Based on an analysis of variance, areas with significantly different fractional anisotropy values between groups were selected for a confirmatory region of interest analysis. Additionally, descriptive voxel-based t tests between the groups were computed. RESULTS: In patients with hallucinations, we found significantly higher white matter directionality in the lateral parts of the temporoparietal section of the arcuate fasciculus and in parts of the anterior corpus callosum compared with control subjects and patients without hallucinations. Comparing patients with hallucinations with patients without hallucinations, we found significant differences most pronounced in the left hemispheric fiber tracts, including the cingulate bundle. CONCLUSION: Our findings suggest that during inner speech, the alterations of white matter fiber tracts in patients with frequent hallucinations lead to abnormal coactivation in regions related to the acoustical processing of external stimuli. This abnormal activation may account for the patients' inability to distinguish self-generated thoughts from external stimulation.
Resumo:
BACKGROUND The medial forebrain bundle (MFB) is a key structure of the reward system and connects the ventral tegmental area (VTA) with the nucleus accumbens (NAcc), the medial and lateral orbitofrontal cortex (mOFC, lOFC) and the dorsolateral prefrontal cortex (dlPFC). Previous diffusion tensor imaging (DTI) studies in major depressive disorder point to white matter alterations of regions which may be incorporated in the MFB. Therefore, it was the aim of our study to probe white matter integrity of the MFB using a DTI-based probabilistic fibre tracking approach. METHODS 22 patients with major depressive disorder (MDD) (12 melancholic-MDD patients, 10 non-melancholic-MDD patients) and 21 healthy controls underwent DTI scans. We used a bilateral probabilistic fibre tracking approach to extract pathways between the VTA and NACC, mOFC, lOFC, dlPFC respectively. Mean fractional anisotropy (FA) values were used to compare structural connectivity between groups. RESULTS Mean-FA did not differ between healthy controls and all MDD patients. Compared to healthy controls melancholic MDD-patients had reduced mean-FA in right VTA-lOFC and VTA-dlPFC connections. Furthermore, melancholic-MDD patients had lower mean-FA than non-melancholic MDD-patients in the right VTA-lOFC connection. Mean-FA of these pathways correlated negatively with depression scale rating scores. LIMITATIONS Due to the small sample size and heterogeneous age group comparisons between melancholic and non-melancholic MDD-patients should be regarded as preliminary. CONCLUSIONS Our results suggest that the melancholic subtype of MDD is characterized by white matter microstructure alterations of the MFB. White matter microstructure is associated with both depression severity and anhedonia.
Resumo:
A new anisotropic elastic-viscoplastic damage constitutive model for bone is proposed using an eccentric elliptical yield criterion and nonlinear isotropic hardening. A micromechanics-based multiscale homogenization scheme proposed by Reisinger et al. is used to obtain the effective elastic properties of lamellar bone. The dissipative process in bone is modeled as viscoplastic deformation coupled to damage. The model is based on an orthotropic ecuntric elliptical criterion in stress space. In order to simplify material identification, an eccentric elliptical isotropic yield surface was defined in strain space, which is transformed to a stress-based criterion by means of the damaged compliance tensor. Viscoplasticity is implemented by means of the continuous Perzyna formulation. Damage is modeled by a scalar function of the accumulated plastic strain D(κ) , reducing all element s of the stiffness matrix. A polynomial flow rule is proposed in order to capture the rate-dependent post-yield behavior of lamellar bone. A numerical algorithm to perform the back projection on the rate-dependent yield surface has been developed and implemented in the commercial finite element solver Abaqus/Standard as a user subroutine UMAT. A consistent tangent operator has been derived and implemented in order to ensure quadratic convergence. Correct implementation of the algorithm, convergence, and accuracy of the tangent operator was tested by means of strain- and stress-based single element tests. A finite element simulation of nano- indentation in lamellar bone was finally performed in order to show the abilities of the newly developed constitutive model.