961 resultados para Bleaching dynamic. Abiotic parameters. Coral coverage. Maracajaú reefs
Resumo:
Study Objectives: To analyze the role of arterial baroreflex on hemodynamic changes during synchronized and desynchronized sleep phases of natural sleep in rats. Design: Experimental study. Setting: Laboratory. Participants: Seventeen male Wistar rats. Interventions: No intervention (control, n = 8) or sinoaortic denervation (SAD, n = 9). Measurements and Results: Sleep phases were monitored by electrocorticogram, and blood pressure was measured directly by a catheter in the carotid artery. Cardiac output, as well as total and regional vascular resistances, were determined by measuring the subdiaphragmatic aorta and iliac artery flows with Doppler flow probes, respectively. In contrast to the control group, the SAD group had a strong reduction in blood pressure (-19.9% +/- 2.6% vs -0.7% +/- 2.1%) during desynchronized sleep, and cardiac output showed an exacerbated reduction (-10.4% +/- 3.5% vs 1.1% +/- 1.7%). In SAD rats, total vascular resistance decreased during desynchronized sleep (-10.1% +/- 3.5% vs -1.0% +/- 1.7%), and the increase in regional vascular resistance observed in the control group was abolished (27.5% +/- 8.3% vs -0.8% +/- 9.4%). Conclusions: SAD caused profound changes in blood pressure, cardiac output, and total vascular resistance, with a significant increase in muscle vascular resistance during synchronized sleep. Our results suggest that baroreflex plays an important role in maintaining the normal balance of cardiac output and total vascular resistance during sleep.
Resumo:
Ambient particles have been consistently associated with adverse health effects, yielding mainly high cardiorespiratory morbidity and mortality. Diesel engines represent a major source of particles in the urban scenario. We aimed to modify the composition of diesel particles, by means of different extraction procedures, to relate changes in chemical profile to corresponding indicators of respiratory toxicity. Male BALB/c mice were nasally instilled with saline, or with diesel particles, treated or not, and assigned to five groups: saline ( SHAM), intact diesel particles (DEP), and diesel particles previously treated with methanol ( METH), hexane ( HEX), or nitric acid (NA). Elemental composition and organic compounds were analyzed. Twenty-four hours after nasal instillation, respiratory parameters were measured and lung tissue was collected for histological analysis. Static elastance was significantly increased in groups DEP and MET in relation to the other groups. HEX and NA were different from DEP but not significantly different from SHAM and METH groups. The difference between dynamic and static elastance was increased in DEP, METH, and NA treatments; HEX was not statistically different from SHAM. DEP and METH groups presented significantly increased upper airways resistance, while DEP, METH, and NA showed higher peripheral airways resistance values. All groups had a higher total resistance than SHAM. DEP, METH, and NA showed significant increased infiltration of polymorphonuclear cells. In conclusion, diesel particles treated with hexane ( HEX) resulted in a respiratory-system profile very similar to that in SHAM group, indicating that hexane treatment attenuates pulmonary inflammation elicited by diesel particles.
Resumo:
In adolescent idiopathic scoliosis (AIS) there has been a shift towards increasing the number of implants and pedicle screws, which has not been proven to improve cosmetic correction. To evaluate if increasing cost of instrumentation correlates with cosmetic correction using clinical photographs. 58 Lenke 1A and B cases from a multicenter AIS database with at least 3 months follow-up of clinical photographs were used for analysis. Cosmetic parameters on PA and forward bending photographs included angular measurements of trunk shift, shoulder balance, rib hump, and ratio measurements of waist line asymmetry. Pre-op and follow-up X-rays were measured for coronal and sagittal deformity parameters. Cost density was calculated by dividing the total cost of instrumentation by the number of vertebrae being fused. Linear regression and spearman`s correlation were used to correlate cost density to X-ray and photo outcomes. Three independent observers verified radiographic and cosmetic parameters for inter/interobserver variability analysis. Average pre-op Cobb angle and instrumented correction were 54A degrees (SD 12.5) and 59% (SD 25) respectively. The average number of vertebrae fused was 10 (SD 1.9). The total cost of spinal instrumentation ranged from $6,769 to $21,274 (Mean $12,662, SD $3,858). There was a weak positive and statistically significant correlation between Cobb angle correction and cost density (r = 0.33, p = 0.01), and no correlation between Cobb angle correction of the uninstrumented lumbar spine and cost density (r = 0.15, p = 0.26). There was no significant correlation between all sagittal X-ray measurements or any of the photo parameters and cost density. There was good to excellent inter/intraobserver variability of all photographic parameters based on the intraclass correlation coefficient (ICC 0.74-0.98). Our method used to measure cosmesis had good to excellent inter/intraobserver variability, and may be an effective tool to objectively assess cosmesis from photographs. Since increasing cost density only improves mildly the Cobb angle correction of the main thoracic curve and not the correction of the uninstrumented spine or any of the cosmetic parameters, one should consider the cost of increasing implant density in Lenke 1A and B curves. In the area of rationalization of health care expenses, this study demonstrates that increasing the number of implants does not improve any relevant cosmetic or radiographic outcomes.
Resumo:
The cellular prion protein (PrPC) is a neuronal anchored glycoprotein that has been associated with distinct functions in the CNS, such as cellular adhesion and differentiation, synaptic plasticity and cognition. Here we investigated the putative involvement of the PrPC in the innate fear-induced behavioural reactions in wild-type (WT), PrPC knockout (Prnp(0/0)) and the PrPC overexpressing Tg-20 mice evoked in a prey versus predator paradigm. The behavioural performance of these mouse strains in olfactory discrimination tasks was also investigated. When confronted with coral snakes, mice from both Prnp(0/0) and Tg-20 strains presented a significant decrease in frequency and duration of defensive attention and risk assessment, compared to WT mice. Tg-20 mice presented decreased frequency of escape responses, increased exploratory behaviour, and enhancement of interaction with the snake, suggesting a robust fearlessness caused by PrPC overexpression. Interestingly, there was also a discrete decrease in the attentional defensive response (decreased frequency of defensive alertness) in Prnp(0/0) mice in the presence of coral snakes. Moreover, Tg-20 mice presented an increased exploration of novel environment and odors. The present findings indicate that the PrPC overexpression causes hyperactivity, fearlessness, and increased preference for visual, tactile and olfactory stimuli-associated novelty, and that the PrPC deficiency might lead to attention deficits. These results suggest that PrPC exerts an important role in the modulation of innate fear and novelty-induced exploration. (C) 2008 Published by Elsevier B.V.
Resumo:
Dynamic exercise evokes sustained cardiovascular changes, which are characterized by blood pressure and heart rate (HR) increases. Although it is well accepted that there is a central nervous system (CNS) mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is limited. The bed nucleus of the stria terminalis (BST) is a forebrain structure known to be involved in central cardiovascular control. Based on this, we tested the hypothesis that BST modulates HR and mean arterial pressure (MAP) responses evoked when rats are submitted to dynamic exercise. Male Wistar rats were tested at three levels of exercise (0.4, 0.8 and 1 km h-1) on a rodent treadmill before and after BST treatment with CoCl(2), a non-selective neurotransmission blocker. Bilateral microinjection of CoCl(2) (1 nmol in 100 nl artificial cerebrospinal fluid) into the BST reduced the pressor response to exercise at 0.4 km h-1 as well as the tachycardic responses evoked by exercise at 0.4, 0.8 and 1 km h-1. The BST treatment with CoCl(2) did not affect baseline MAP or HR, suggesting a lack of tonic BST influence on cardiovascular parameters at rest. Moreover, BST treatment with CoCl(2) did not affect motor performance in the open-field test, which indicates that effects of BST inhibition on cardiovascular responses to dynamic exercise are not due to changes in motor activity. The present results suggest that local neurotransmission in the BST modulates exercise-related cardiovascular adjustments. Data indicate that BST facilitates pressor and tachycardic responses evoked by dynamic exercise in rats.
Resumo:
We evaluated 16 pregnant women with gestational age between 20 and 32 weeks in acute severe hypertension which were randomly allocated to receive either hydralazine or labetalol. Blood pressure and Doppler ultrasound parameters from maternal uterine and fetal middle cerebral and umbilical arteries were assessed during acute severe hypertension and after treatment. A significant reduction in systolic and diastolic blood pressure was observed in both groups. A significant change in Doppler parameters was observed only in pregnant women who received hydralazine: an increase in uterine arteries resistance index. We concluded that both drugs were highly effective in reducing blood pressure in these women. Despite the observed increase in resistance index of uterine arteries associated with hydralazine, the use of hydralazine and labetalol were not related to any significant changes in fetal Doppler, which is reassuring about the safety of these drugs when treating acute severe hypertension in pregnancy. (E-mail: wpmartins@gmail.com) (C) 2011 World Federation for Ultrasound in Medicine & Biology.
Resumo:
Historically, the cure rate model has been used for modeling time-to-event data within which a significant proportion of patients are assumed to be cured of illnesses, including breast cancer, non-Hodgkin lymphoma, leukemia, prostate cancer, melanoma, and head and neck cancer. Perhaps the most popular type of cure rate model is the mixture model introduced by Berkson and Gage [1]. In this model, it is assumed that a certain proportion of the patients are cured, in the sense that they do not present the event of interest during a long period of time and can found to be immune to the cause of failure under study. In this paper, we propose a general hazard model which accommodates comprehensive families of cure rate models as particular cases, including the model proposed by Berkson and Gage. The maximum-likelihood-estimation procedure is discussed. A simulation study analyzes the coverage probabilities of the asymptotic confidence intervals for the parameters. A real data set on children exposed to HIV by vertical transmission illustrates the methodology.
Resumo:
Oxidative stress plays an important role in the development of cognitive impairment in sepsis. Here we assess the effects of acute and extended administration of cannabidiol (CBD) on oxidative stress parameters in peripheral organs and in the brain, cognitive impairment, and mortality in rats submitted to sepsis by cecal ligation and perforation (CLP). To this aim, male Wistar rats underwent either sham operation or CLP. Rats subjected to CLP were treated by intraperitoneal injection with ""basic support"" and CBD (at 2.5, 5, or 10 mg/kg once or daily for 9 days after CLP) or vehicle. Six hours after CLP (early times), the rats were killed and samples from lung, liver, kidney, heart, spleen, and brain (hippocampus, striatum, and cortex) were obtained and assayed for thiobarbituric acid reactive species (TBARS) formation and protein carbonyls. On the 10th day (late times), the rats were submitted to the inhibitory avoidance task. After the test, the animals were killed and samples from lung, liver, kidney, heart, spleen, and brain (hippocampus) were obtained and assayed for TBARS formation and protein carbonyls. The acute and extended administration of CBD at different doses reduced TBARS and carbonyl levels in some organs and had no effects in others, ameliorated cognitive impairment, and significantly reduced mortality in rats submitted to CLP. Our data provide the first experimental demonstration that CBD reduces the consequences of sepsis induced by CLP in rats, by decreasing oxidative stress in peripheral organs and in the brain, improving impaired cognitive function, and decreasing mortality. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The chronic mild stress (CMS) model has been used as an animal model of depression which induces anhedonic behavior in rodents. The present study was aimed to evaluate the behavioral and physiological effects of administration of P-carboline harmine in rats exposed to CMS Procedure. To this aim, after 40 days of exposure to CMS procedure, rats were treated with harmine (15 mg/kg/day) for 7 days. In this study, sweet food consumption, adrenal gland weight, adrenocorticotrophin hormone (ACTH) levels, and hippocampal brain-derived-neurotrophic factor (BDNF) protein levels were assessed. Our findings demonstrated that chronic stressful situations induced anhedonia, hypertrophy of adrenal gland weight, increase ACTH circulating levels in rats and increase BDNF protein levels. Interestingly, treatment with harmine reversed anhedonia, the increase of adrenal gland weight, normalized ACTH circulating levels and BDNF protein levels. Finally, these findings further support the hypothesis that harmine could be a new pharmacological tool for the treatment of depression. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Purpose: To quantitatively evaluate changes induced by the application of a femoral blood-pressure cuff (BPC) on run-off magnetic resonance angiography (MRA). which is a method generally previously proposed to reduce venous contamination in the leg. Materials and Methods: This study was Health Insurance Portability and Accountability Act (HIPAA)- and Institutional Review Board (IRB)-compliant, We used time-resolved gradient-echo gadolinium (Gd)-enhanced MRA to measure BPC effects on arterial, venous, and soft-tissue enhancement. Seven healthy volunteers (six men) were studied with the BPC applied at the mid-femoral level unilaterally using a 1.5T MR system after intravenous injection of Gd-BOPTA. Different statistical tools were used such as the Wilcoxon signed rank test and a cubic smoothing spline fit. Results: We found that BPC application induces delayed venous filling (as previously described), but also induces significant decreases in arterial inflow, arterial enhancement, vascular-soft tissue contrast, and delayed peak enhancement (which have not been previously measured). Conclusion: The potential benefits from using a BPC for run-off MRA must be balanced against the potential pitfalls, elucidated by our findings.