947 resultados para Biomedical Signal Processing
Resumo:
O Monitoramento Acústico Passivo (PAM) submarino refere-se ao uso de sistemas de escuta e gravação subaquática, com o intuito de detectar, monitorar e identificar fontes sonoras através das ondas de pressão que elas produzem. Se diz que é passivo já que tais sistemas unicamente ouvem, sem perturbam o meio ambiente acústico existente, diferentemente de ativos, como os sonares. O PAM submarino tem diversas áreas de aplicação, como em sistemas de vigilância militar, seguridade portuária, monitoramento ambiental, desenvolvimento de índices de densidade populacional de espécies, identificação de espécies, etc. Tecnologia nacional nesta área é praticamente inexistente apesar da sua importância. Neste contexto, o presente trabalho visa contribuir com o desenvolvimento de tecnologia nacional no tema através da concepção, construção e operação de equipamento autônomo de PAM e de métodos de processamento de sinais para detecção automatizada de eventos acústicos submarinos. Foi desenvolvido um equipamento, nomeado OceanPod, que possui características como baixo custo de fabrica¸c~ao, flexibilidade e facilidade de configuração e uso, voltado para a pesquisa científica, industrial e para controle ambiental. Vários protótipos desse equipamento foram construídos e utilizados em missões no mar. Essas jornadas de monitoramento permitiram iniciar a criação de um banco de dados acústico, o qual permitiu fornecer a matéria prima para o teste de detectores de eventos acústicos automatizados e em tempo real. Adicionalmente também é proposto um novo método de detecção-identificação de eventos acústicos, baseado em análise estatística da representação tempo-frequência dos sinais acústicos. Este novo método foi testado na detecção de cetáceos, presentes no banco de dados gerado pelas missões de monitoramento.
Resumo:
A aquisição experimental de sinais neuronais é um dos principais avanços da neurociência. Por meio de observações da corrente e do potencial elétricos em uma região cerebral, é possível entender os processos fisiológicos envolvidos na geração do potencial de ação, e produzir modelos matemáticos capazes de simular o comportamento de uma célula neuronal. Uma prática comum nesse tipo de experimento é obter leituras a partir de um arranjo de eletrodos posicionado em um meio compartilhado por diversos neurônios, o que resulta em uma mistura de sinais neuronais em uma mesma série temporal. Este trabalho propõe um modelo linear de tempo discreto para o sinal produzido durante o disparo do neurônio. Os coeficientes desse modelo são calculados utilizando-se amostras reais dos sinais neuronais obtidas in vivo. O processo de modelagem concebido emprega técnicas de identificação de sistemas e processamento de sinais, e é dissociado de considerações sobre o funcionamento biofísico da célula, fornecendo uma alternativa de baixa complexidade para a modelagem do disparo neuronal. Além disso, a representação por meio de sistemas lineares permite idealizar um sistema inverso, cuja função é recuperar o sinal original de cada neurônio ativo em uma mistura extracelular. Nesse contexto, são discutidas algumas soluções baseadas em filtros adaptativos para a simulação do sistema inverso, introduzindo uma nova abordagem para o problema de separação de spikes neuronais.
Resumo:
Electroencephalographic (EEG) signals of the human brains represent electrical activities for a number of channels recorded over a the scalp. The main purpose of this thesis is to investigate the interactions and causality of different parts of a brain using EEG signals recorded during a performance subjects of verbal fluency tasks. Subjects who have Parkinson's Disease (PD) have difficulties with mental tasks, such as switching between one behavior task and another. The behavior tasks include phonemic fluency, semantic fluency, category semantic fluency and reading fluency. This method uses verbal generation skills, activating different Broca's areas of the Brodmann's areas (BA44 and BA45). Advanced signal processing techniques are used in order to determine the activated frequency bands in the granger causality for verbal fluency tasks. The graph learning technique for channel strength is used to characterize the complex graph of Granger causality. Also, the support vector machine (SVM) method is used for training a classifier between two subjects with PD and two healthy controls. Neural data from the study was recorded at the Colorado Neurological Institute (CNI). The study reveals significant difference between PD subjects and healthy controls in terms of brain connectivities in the Broca's Area BA44 and BA45 corresponding to EEG electrodes. The results in this thesis also demonstrate the possibility to classify based on the flow of information and causality in the brain of verbal fluency tasks. These methods have the potential to be applied in the future to identify pathological information flow and causality of neurological diseases.
Resumo:
This correspondence presents an efficient method for reconstructing a band-limited signal in the discrete domain from its crossings with a sine wave. The method makes it possible to design A/D converters that only deliver the crossing timings, which are then used to interpolate the input signal at arbitrary instants. Potentially, it may allow for reductions in power consumption and complexity in these converters. The reconstruction in the discrete domain is based on a recently-proposed modification of the Lagrange interpolator, which is readily implementable with linear complexity and efficiently, given that it re-uses known schemes for variable fractional-delay (VFD) filters. As a spin-off, the method allows one to perform spectral analysis from sine wave crossings with the complexity of the FFT. Finally, the results in the correspondence are validated in several numerical examples.
Resumo:
This letter presents a method to model propagation channels for estimation, in which the sampling scheme can be arbitrary. Additionally, the method yields accurate models, with a size that converges to the channel duration, measured in Nyquist periods. It can be viewed as an improvement on the usual discretization based on regular sampling at the Nyquist rate. The method is introduced in the context of multiple delay estimation using the MUSIC estimator, and is assessed through a numerical example.
Resumo:
There are a large number of image processing applications that work with different performance requirements and available resources. Recent advances in image compression focus on reducing image size and processing time, but offer no real-time solutions for providing time/quality flexibility of the resulting image, such as using them to transmit the image contents of web pages. In this paper we propose a method for encoding still images based on the JPEG standard that allows the compression/decompression time cost and image quality to be adjusted to the needs of each application and to the bandwidth conditions of the network. The real-time control is based on a collection of adjustable parameters relating both to aspects of implementation and to the hardware with which the algorithm is processed. The proposed encoding system is evaluated in terms of compression ratio, processing delay and quality of the compressed image when compared with the standard method.
Resumo:
Paper submitted to International Workshop on Spectral Methods and Multirate Signal Processing (SMMSP), Barcelona, España, 2003.
Resumo:
This paper presents a method to interpolate a periodic band-limited signal from its samples lying at nonuniform positions in a regular grid, which is based on the FFT and has the same complexity order as this last algorithm. This kind of interpolation is usually termed “the missing samples problem” in the literature, and there exists a wide variety of iterative and direct methods for its solution. The one presented in this paper is a direct method that exploits the properties of the so-called erasure polynomial and provides a significant improvement on the most efficient method in the literature, which seems to be the burst error recovery (BER) technique of Marvasti’s The paper includes numerical assessments of the method’s stability and complexity.
Resumo:
This paper deals with the estimation of a time-invariant channel spectrum from its own nonuniform samples, assuming there is a bound on the channel’s delay spread. Except for this last assumption, this is the basic estimation problem in systems providing channel spectral samples. However, as shown in the paper, the delay spread bound leads us to view the spectrum as a band-limited signal, rather than the Fourier transform of a tapped delay line (TDL). Using this alternative model, a linear estimator is presented that approximately minimizes the expected root-mean-square (RMS) error for a deterministic channel. Its main advantage over the TDL is that it takes into account the spectrum’s smoothness (time width), thus providing a performance improvement. The proposed estimator is compared numerically with the maximum likelihood (ML) estimator based on a TDL model in pilot-assisted channel estimation (PACE) for OFDM.
Resumo:
Vols.1-87,1872-1940 also called no.1-258.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Terrain classification based on markov random field texture modeling of SAR and SAR coherency images
Resumo:
This paper presents a new low-complexity multicarrier modulation (MCM) technique based on lattices which achieves a peak-to-average power ratio (PAR) as low as three. The scheme can be viewed as a drop in replacement for the discrete multitone (DMT) modulation of an asymmetric digital subscriber line modem. We show that the lattice-MCM retains many of the attractive features of sinusoidal-MCM, and does so with lower implementation complexity, O(N), compared with DMT, which requires O(N log N) operations. We also present techniques for narrowband interference rejection and power profiling. Simulation studies confirm that performance of the lattice-MCM is superior, even compared with recent techniques for PAR reduction in DMT.
Resumo:
Objective: To examine the relationship between the auditory brain-stem response (ABR) and its reconstructed waveforms following discrete wavelet transformation (DWT), and to comment on the resulting implications for ABR DWT time-frequency analysis. Methods: ABR waveforms were recorded from 120 normal hearing subjects at 90, 70, 50, 30, 10 and 0 dBnHL, decomposed using a 6 level discrete wavelet transformation (DWT), and reconstructed at individual wavelet scales (frequency ranges) A6, D6, D5 and D4. These waveforms were then compared for general correlations, and for patterns of change due to stimulus level, and subject age, gender and test ear. Results: The reconstructed ABR DWT waveforms showed 3 primary components: a large-amplitude waveform in the low-frequency A6 scale (0-266.6 Hz) with its single peak corresponding in latency with ABR waves III and V; a mid-amplitude waveform in the mid-frequency D6 scale (266.6-533.3 Hz) with its first 5 waves corresponding in latency to ABR waves 1, 111, V, VI and VII; and a small-amplitude, multiple-peaked waveform in the high-frequency D5 scale (533.3-1066.6 Hz) with its first 7 waves corresponding in latency to ABR waves 1, 11, 111, IV, V, VI and VII. Comparisons between ABR waves 1, 111 and V and their corresponding reconstructed ABR DWT waves showed strong correlations and similar, reliable, and statistically robust changes due to stimulus level and subject age, gender and test ear groupings. Limiting these findings, however, was the unexplained absence of a small number (2%, or 117/6720) of reconstructed ABR DWT waves, despite their corresponding ABR waves being present. Conclusions: Reconstructed ABR DWT waveforms can be used as valid time-frequency representations of the normal ABR, but with some limitations. In particular, the unexplained absence of a small number of reconstructed ABR DWT waves in some subjects, probably resulting from 'shift invariance' inherent to the DWT process, needs to be addressed. Significance: This is the first report of the relationship between the ABR and its reconstructed ABR DWT waveforms in a large normative sample. (C) 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
This letter considers clip-limited transmission over multiple-input multiple-output digital subscriber lines (MIMO-DSL). We show that a recent low complexity, low peak-to-average-ratio (PAR) single-input modulation technique can be applied to the case of multiple cross-talking channels in a bonded-DSL system. Unfortunately however the direct initialization procedure is computationally infeasible. In this paper, we provide a novel low-complexity initialization procedure. Simulations confirm that the proposed approach has superior performance in clip-limited conditions, compared with both discrete matrix multitone and vectored discrete multitone.