980 resultados para Biology, Molecular|Biology, Neuroscience|Biology, Cell|Chemistry, Biochemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A growing body of evidence suggests that the Golgi complex contains an actin-based filament system. We have previously reported that one or more isoforms from the tropomyosin gene Tm5NM (also known as gamma-Tm), but not from either the alpha- or beta-Tm genes, are associated with Golgi-derived vesicles (Heimann et al., (1999). J. Biol. Chem. 274, 10743-10750). We now show that Tm5NM-2 is sorted specifically to the Golgi complex, whereas Tm5NM-1, which differs by a single alternatively spliced internal exon, is incorporated into stress fibers. Tm5NM-2 is localized to the Golgi complex consistently throughout the G1 phase of the cell cycle and it associates with Golgi membranes in a brefeldin A-sensitive and cytochalasin D-resistant manner. An actin antibody, which preferentially reacts with the ends of microfilaments, newly reveals a population of short actin filaments associated with the Golgi complex and particularly with Golgi-derived vesicles. Tm5NM-2 is also found on these short microfilaments. We conclude that an alternative splice choice can restrict the sorting of a tropomyosin isoform to short actin filaments associated with Golgi-derived vesicles. Our evidence points to a role for these Golgi-associated microfilaments in vesicle budding at the level of the Golgi complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurotransmitter release and hormonal secretion are highly regulated processes culminating in the calcium-dependent fusion of secretory vesicles with the plasma membrane. Here, we have identified a role for phosphatidylinositol 3-kinase C2 alpha (PI3K-C2 alpha) and its main catalytic product, PtdIns3P, in regulated exocytosis. In neuroendocrine cells, PI3K-C2 alpha is present on a subpopulation of mature secretory granules. Impairment of PI3K-C2 alpha function specifically inhibits the ATP-dependent priming phase of exocytosis. Overexpression of wild-type PI3K-C2 alpha enhanced secretion, whereas transfection of PC12 cells with a catalytically inactive PI3K-C2 alpha mutant or a 2xFYVE domain sequestering PtdIns3P abolished secretion. Based on these results, we propose that production of PtdIns3P by PI3K-C2 alpha is required for acquisition of fusion competence in neurosecretion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Centrosomes in mammalian cells have recently been implicated in cytokinesis; however, their role in this process is poorly defined. Here, we describe a human coiled-coil protein, Cep55 (centrosome protein 55 kDa), that localizes to the mother centriole during interphase. Despite its association with gamma-TuRC anchoring proteins CG-NAP and Kendrin, Cep55 is not required for microtubule nucleation. Upon mitotic entry, centrosome dissociation of Cep55 is triggered by Erk2/Cdk1-dependent phosphorylation at S425 and S428. Furthermore, Cep55 locates to the midbody and plays a role in cytokinesis, as its depletion by siRNA results in failure of this process. S425/428 phosphorylation is required for interaction with Plk1, enabling phosphorylation of Cep55 at S436. Cells expressing phosphorylation-deficient mutant forms of Cep55 undergo cytokinesis failure. These results highlight the centrosome as a site to organize phosphorylation of Cep55, enabling it to relocate to the midbody to function in mitotic exit and cytokinesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serial passaging of wild-type Helicoverpa armigera, single-nucleocapsid (HaSNPV) in H. zea (HzAMI) illsect Cell Cultures results ill rapid selection for the few polyhedra (FP) phenotype. A unique HaSNPV mutant (ppC19) was isolated through plaque purification that exhibited a partial many polyhedra (MP) and FP phenotype. Oil serial passaging in suspension cell cultures, ppC19 produced fivefold more polyhedra than a typical FP mutant (FP8AS) but threefold less polyhedra than the wild-type virus. Most importantly, the polyhedra of ppC19 exhibited MP-like virion occlusion. Furthermore, ppC19 produced the same amount of budded virus (BV) as the FP mutant, which was fivefold higher than that of the wild-type virus. This selective advantage was likely to explain its relative stability in polyhedra production for six passages when compared with the wild-type Virus. However, subsequent passaging of ppC19 resulted in a steel) decline in both BV and polyhedra yields, which was also experienced by FP8AS and the wild-type virus Lit high passage numbers. Genomic deoxyribonueleic Licid profiling of the latter suggested that defective interfering particles (DIPS) were implicated in this phenomenon and represented another Undesirable mutation during serial passaging of HaSNPV Hence, a strategy to isolate HaSNPV Clones that exhibited MP-like polyhedra production but FP-like BV production, coupled with low multiplicities of infection during scale-up to avoid accumulation of DIPS, could prove commerically invaluable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular mechanisms behind the entry of the primordial follicle into the growing follicle pool remain poorly understood. To investigate this process further, a microarray-based comparison was undertaken between 2-day postpartum mouse ovaries consisting of primordial follicles/naked oocytes only and those with both primordial follicles and newly activated follicles (7-day postpartum). Gene candidates identified included the chemoattractive cytokine stromal derived factor-1 (SDF1) and its receptor CXCR4. SDF1 and CXCR4 have been implicated in a variety of physiological processes including the migration of embryonic germ cells to the gonads. SDF1-alpha expression increased with the developmental stage of the follicle. Embryonic expression was found to be dichotomous post-genii cell migration, with low expression in the female. Immunohistochemical studies nonetheless indicate that the autocrine pattern of expression ligand and receptor begins during embryonic life. Addition of recombinant SDF1-alpha to neonatal mouse ovaries in vitro resulted in significantly higher follicle densities than for control ovaries. TUNEL analysis indicated no detectable difference in populations of apoptotic cells of treated or control ovaries. Treated ovaries also contained a significantly lower percentage of activated follicles as determined by measurement of oocyte diameter and morphological analysis. Treatment of cultured ovaries with an inhibitor of SDF1-alpha, AMD3100, ablated the effect of SDF1-alpha. By retaining follicles in an unactivated state, SDF1/CXCR4 signaling may play an important role in maintaining the size and longevity of the primordial follicle pool. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural killer T (NKT) cells are a lymphocyte lineage, which has diverse immune regulatory activities in many disease settings. Most previous studies have investigated the functions of this family of cells as a single entity, but more recent evidence highlights the distinct functional and phenotypic properties of NKT cell subpopulations. It is likely that the diverse functions of NKT cells are regulated and coordinated by these different NKT subsets. Little is known about how NKT subsets differ in their interactions with the host. We have undertaken the first microarray analysis comparing the gene expression profiles of activated human NKT cell subpopulations, including CD8(+) NKT cells, which have often been overlooked. We describe the significant gene expression differences among NKT cell subpopulations and some of the molecules likely to confer their distinct functional roles. Several genes not associated previously with NKT cells were shown to be expressed differentially in specific NKT cell subpopulations. Our findings provide new insights into the NKT cell family, which may direct further research toward better manipulation of NKT cells for therapeutic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orientational fluorophores have been a useful tool in physical chemistry, biochemistry, and more recently structural biology due to the polarized nature of the light they emit and that fact that energy can be transferred between them. We present a practical scheme in which measurements of the intensity of emitted fluorescence can be used to determine limits on the mean and distribution of orientation of the absorption transition moment of membrane-bound. uorophores. We demonstrate how information about the orientation of. uorophores can be used to calculate the orientation factor k(2) required for use in FRET spectroscopy. We illustrate the method using images of AlexaFluor probes bound to MscL mechanosensitive transmembrane channel proteins in spherical liposomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preimplantation genetic diagnosis (PGD) following in vitro fertilization (IVF) offers couples at risk for transmitting genetic disorders the opportunity to identify affected embryos prior to replacement. In particular, embryo gender determination permits screening for X-linked diseases of unknown etiology. Analysis of embryos can be performed by polymerase chain reaction (PCR) amplification of material obtained by micromanipulation. This approach provides an alternative to the termination of an established pregnancy following chorionic villi sampling or amniocentesis. ^ Lately, the focus of preimplantation diagnosis and intervention has been shifting toward an attempt to correct cytoplasmic deficiencies. Accordingly, it is the aim of this investigation to develop methods to permit the examination of single cells or components thereof for clinical evaluation. In an attempt to lay the groundwork for precise therapeutic intervention for age related aneuploidy, transcripts encoding proteins believed to be involved in the proper segregation of chromosomes during human oocyte maturation were examined and quantified. Following fluorescent rapid cycle RT-PCR analysis it was determined that the concentration of cell cycle checkpoint gene transcripts decreases significantly as maternal age increases. Given the well established link between increasing maternal age and the incidence of aneuploidy, these results suggest that the degradation of these messages in aging oocytes may be involved with inappropriate chromosome separation during meiosis. ^ In order to investigate the cause of embryonic rescue observed following clinical cytoplasmic transfer procedures and with the objective of developing a diagnostic tool, mtDNA concentrations in polar bodies and subcellular components were evaluated. First, the typical concentration of mtDNA in human and mouse oocytes was determined by fluorescent rapid cycle PCR. Some disparity was noted between the copy numbers of individual cytoplasmic samples which may limit the use of the current methodology for the clinical assessment of the corresponding oocyte. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pteris vittata, the first reported arsenic hyperaccumulating plant, is potentially used in phytoremediation of arsenic, as it can accumulate up to 2.3% of arsenic in its fronds. In this study, the mechanisms of arsenic tolerance, uptake and transformation were studied in the plant. Arsenic species were analyzed by HPLC-AFS. Results showed that arsenic was mainly accumulated in leaflets, and inorganic arsenate and arsenite were only species in P. vittata. Arsenite was the predominant species in leaflets, whereas arsenate was the predominant species in roots. Arsenic induced the synthesis of thiol containing compounds in P. vittata. As-induced thiol was purified by a novel method: covalent chromatography following preparative HPLC. The purified thiol was characterized as a phytochelatin with two units (PC2). ^ In P. vittata, enhanced tolerance likely results from unusual intracellular detoxification mechanisms. Although PC-dependent sequestration of arsenic into vacuoles is essential for nonhyperaccumulators, this sequestration is not the major arsenic tolerance mechanisms in this arsenic hyperaccumulator. PC-independent sequestration of arsenic is likely the major arsenic tolerance mechanism. PC-dependent arsenic detoxification is probably a supplement to this major mechanism. ^ Interactions between arsenic and phosphate were studied. Under hydroponic condition, arsenic supply decreased the concentrations of phosphate in roots. In soil, arsenic increased the concentrations of phosphate in roots. Arsenic concentrations in rachises and leaflets were not affected by arsenic supply in either hydroponic or soil system. Phosphate decreased arsenic accumulation in roots, rachises and leaflets in the hydroponic system. ^ The uptake kinetics of arsenate, arsenite, monomethyl arsinic acid (MMA), dimethyl arsonic acid, and phosphate were studied in P. vittata. Phosphate uptake systems in Pteris vittata cannot distinguish phosphate and As(V), resulting in As hyperaccumulation. Arsenic hyperaccumulation in this plant is an inevitable consequence during phosphate acquisition. Arsenate, arsenite and MMA are transported via the phosphate uptake systems. The co-transport of arsenite/phosphate and MMA/phosphate is reported for the first time in plants. These unique phenomena are useful for understanding arsenic hyperaccumulation and the evolution of this capacity in P. vittata. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endothelin 3 (Edn3) is a ligand important to developing neural crest cells (NCC). Some NCC eventually migrate into the skin and give rise to the pigment-forming melanocytes found in hair follicles. Edn3's effects on NCC have been largely explored through spontaneous mutants and cell culture experiments. These studies have shown the Endothelin receptor B/Edn3 signaling pathway to be important in the proliferation/survival and differentiation of developing melanocytes. To supplement these investigations I have created doxycycline-responsive transgenic mice which conditionally over-express Edn3. These mice will help us clarify Edn3's role during the development of early embryonic melanoblasts, differentiating melanocyte precursors in the skin, and fully differentiated melanocytes in the hair follicle. The transgene mediated expression of Edn3 was predominantly confined to the roof plate of the neural tube and surface ectoderm in embryos and postnatally in the epidermal keratinocytes of the skin. Relative to littermate controls, transgenics develop increased pigmentation on most areas of the skin. My doxycycline-based temporal studies have shown that both embryonic and postnatal events are important for establishing and maintaining pigmented skin. The study of my Edn3 transgenic mice may offer some insight into the genetics behind benign dermal pigmentation and offer clues about the time periods important in establishing these conditions. This apparently abnormal development is echoed in a benign condition of human skin. Cases of dermal melanocytosis, such as common freckles, Mongolian spotting, and nevus of Ito demonstrate histological and etiological characteristics similar to those of the transgenic mice generated in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Neural Crest (NC) is a multipotential group of cells that arises from the dorsal aspect of the neural tube early in development. It is well established that a group of NC cells named Cardiac Neural Crest (CNC) migrates to the heart and plays a critical role in the remodeling of the aortic arch arteries and septation of the outflow tract. In this study, using the mouse mutant Pax3sp/sp that has CNC deficits I have identified a putative novel role for the CNC in regulating apoptosis in the atrioventricular (AV) endocardial cushion. The AV endocardial cushion undergoes remodeling to give rise to the cardiac AV valves. Using a transgenic mouse that carries the LacZ reporter gene under the control of the Dopachrome tautomerase promoter (Dct-LacZ), I found that another NC derived population, melanocyte precursors, also contribute to the AV endocardial cushion and developing AV valves. The analysis of Dct-LacZ embryos at different stages showed that NC cells already committed to the melanocytic fate migrate to the heart along the same initial pathway taken by those that will populate the skin. Hypopigmented mice carrying mutations in the Kit and Endothelin receptor b genes, that are critical for the proper development of skin melanocytes, do not have cardiac melanocytes indicating that cardiac and skin melanocyte precursors share the same initial signaling requirements. The analysis of murine adult hearts showed that melanocytes are mostly found in the atrial sides of the tricuspid and mitral valve leaflets. The distribution of melanocytes in the AV valves corresponds exactly to areas of high Versican B expression, a proteoglycan essential for the process of AV valve remodeling. To evaluate a potential role for melanocytes in the AV valves, a nanoindentation analysis of the tricuspid valves of wild type, hypopigmented and hyperpigmented mice was performed. The storage modulus, a measure of stiffness, for the leaflets obtained from hyperpigmented mice was considerably higher (10.5GPa) than that for the leaflets from wild type (7.5GPa) and hypopigmented animals (between 3.5 and 5.5 GPa) suggesting that melanocytes may contribute to the mechanical properties of the AV valves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cannabis sativa is the most frequently used of all illicit drugs in the United States. Cannabis has been used throughout history for its stems in the production of hemp fiber, for its seed for oil and food, and for its buds and leaves as a psychoactive drug. Short tandem repeats (STRs), were chosen as molecular markers because of their distinct advantages over other genetic methods. STRs are co-dominant, can be standardized such that reproducibility between laboratories can be easily achieved, have a high discrimination power and can be multiplexed. ^ In this study, six STR markers previously described for Cannabis were multiplexed into one reaction. The multiplex reaction was able to individualize 98 Cannabis samples (14 hemp and 84 marijuana, authenticated as originating from 33 of the 50 United States) and detect 29 alleles averaging 4.8 alleles per loci. The data did not relate the samples from the same state to each other. This is the first study to report a single reaction six-plex and apply it to the analysis of almost 100 Cannabis samples of known geographic collection site. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the pathological hallmarks of Alzheimer's disease (AD) brain is extracellular β-amyloid (Aβ) plaques containing 39-42 amino acid Aβ peptides. The deposition of Aβ around blood vessels, known as Cerebral amyloid angiopathy (CAA), is also a common feature in AD brain. Vascular density and cerebral blood flow are reduced in AD brains, and vascular risk factors such as hypertension and diabetes are also risk factors for AD. We have shown previously that Aβ peptides can potently inhibit angiogenesis both in-vitro and in-vivo, but the mechanism of action for this effect is not known. Therefore, my first hypothesis was that particular amino acid sequence(s) within the Aβ peptide are required for inhibition of angiogenesis. From this aim, I found a peptide sequence which was critical for anti-angiogenic activity (HHQKLVFF). This sequence contains a heparan sulfate proteoglycan growth factor binding domain implying that Aβ can interfere with growth factor signaling. Leading on from this, my second hypothesis was that Aβ can inhibit angiogenesis by binding to growth factor receptors. I found that Aβ can bind to Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2), and showed that this is one mechanism by which Aβ can inhibit angiogenesis. Since the vasculature is disrupted in AD brains, I investigated whether a strategy to increase brain vascularization would be beneficial against AD pathology. Therefore, my third hypothesis was that voluntary exercise (which is known to increase brain vascularization in rodents) can ameliorate Aβ pathology, increase brain vascularization, and improve behavioral deficits in a transgenic mouse model of AD. I found that exercise has no effect on Aβ pathology, brain vascularization or behavioral deficits. Therefore, in the transgenic mouse model that I used, exercise is an ineffective therapeutic strategy against AD pathology and symptoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major problem with breast cancer treatment is the prevalence of antiestrogen resistance, be it de novo or acquired after continued use. Many of the underlying mechanisms of antiestrogen resistance are not clear, although estrogen receptor-mediated actions have been identified as a pathway that is blocked by antiestrogens. Selective estrogen receptor modulators (SERMs), such as tamoxifen, are capable of producing reactive oxygen species (ROS) through metabolic activation, and these ROS, at high levels, can induce irreversible growth arrest that is similar to the growth arrest incurred by SERMs. This suggests that SERM-mediated growth arrest may also be through ROS accumulation. Breast cancer receiving long-term antiestrogen treatment appears to adapt to this increased, persistent level of ROS. This, in turn, leads to the disruption of reversible redox signaling that involves redox-sensitive phosphatases and protein kinases and transcription factors. This has downstream consequences for apoptosis, cell cycle progression, and cell metabolism. For this dissertation, we explored if altering the ROS formed by tamoxifen also alters sensitivity of the drug in resistant cells. We explored an association with a thioredoxin/Jab1/p27 pathway, and a possible role of dysregulation of thioredoxin-mediated redox regulation contributing to the development of antiestrogen resistance in breast cancer. We used standard laboratory techniques to perform proteomic assays that showed cell proliferation, protein concentrations, redox states, and protein-protein interactions. We found that increasing thioredoxin reductase levels, and thus increasing the amount of reduced thioredoxin, increased tamoxifen sensitivity in previously resistant cells, as well as altered estrogen and tamoxifen-induced ROS. We also found that decreasing levels of Jab1 protein also increased tamoxifen sensitivity, and that the downstream effects showed a decrease p27 phosphorylation in both cases. We conclude that the chronic use of tamoxifen can lead to an increase in ROS that alters cell signaling and causing cell growth in the presence of tamoxifen, and that this resistant cell growth can be reversed with an alteration to the thioredoxin/Jab1 pathway.