996 resultados para Biological radiation effects
Resumo:
The cytotoxic activity of amino (3a-e), aza-1-antraquinone (4a-e) lapachol derivatives against Ehrlich carcinoma and human K562 leukemia cells was investigated. Cell viability was determined using MTT assay, after 48 (Ehrlich) or 96 h (K562) of culture, and vincristine (for K562 leukemia) and quercetin (for Ehrlich carcinoma) were used as positive controls. The results showed dose-dependent growth-inhibiting activities and that the amino derivatives were active against the assayed cells, whereas the 4a-e derivatives were not. The allylamine derivative 3a was the most active against Ehrlich carcinoma, with IC50 = 16.94 ± 1.25 µM, and against K562 leukemia, with IC50 = 14.11 ± 1.39 µM. The analogous lawsone derivative, 5a, was also active against Ehrlich carcinoma (IC50 = 23.89 ± 2.3 µM), although the 5d and 5e derivatives showed lower activity. The interaction between 3a-d and calf thymus DNA was investigated by fluorimetric titration and the results showed a hyperchromic effect indicating binding to DNA as presented of ethidium bromide, used as positive control. The inhibitory action on DNA-topoisomerase II-a was also evaluated by a relaxation assay of supercoiled DNA plasmid, and the etoposide (200 µM) was used as positive control. Significant inhibitory activities were observed for 3a-d at 200 µM and a partial inhibitory action was observed for lapachol and methoxylapachol.
Resumo:
The objective of the present study was to determine if the combination of alkaloids from Sophora moorcroftiana seeds and albendazole might be effective in the treatment of experimental echinococcosisin female NIH mice (6 weeks old and weighing 18-20 g, N = 8 in each group) infected withprotoscolices of Echinococcus granulosus. Viable protoscolices (N = 6 x 103) were cultured in vitro in 1640 medium and mortality was calculated daily. To determine the in vivo efficacy, mice were inoculated intraperitoneally with viable protoscolices and then treated once daily by gavage for three months with the alkaloids (50 mg kg-1 day-1) and albendazole (50 mg kg-1 day-1), separately and in combination (both alkaloids at 25 mg kg-1 day-1 and albendazole at 25 mg kg-1 day-1). Next, the hydatid cysts collected from the peritoneal cavity of the animals were weighed and serum IL-4, IL-2, and IgE levels were analyzed. Administration of alkaloids to cultured protoscolices showed significant dose- and time-dependent killing effects. The weight of hydatid cysts was significantly decreased upon treatment with each drug (P < 0.01), but the decrease was more prominent and the rate of hydatid cyst growth inhibition was much higher (76.1%) in the group receiving the combined treatments (18.3 ± 4.6 mg). IL-4 and total IgE were decreased (939 ± 447 pg/mL and 2.03 ± 0.42 IU/mL, respectively) in serum from mice treated with alkaloids and albendazole compared with the untreated control (1481 ± 619 pg/mL and 3.31 ± 0.37 IU/mL; P < 0.01). These results indicate that S. moorcroftiana alkaloids have protoscolicidal effects and the combination of alkaloids and albendazole has significant additive effects.
Resumo:
The pharmacology of synthetic organoselenium compounds indicates that they can be used as antioxidants, enzyme inhibitors, neuroprotectors, anti-tumor and anti-infectious agents, and immunomodulators. In this review, we focus on the effects of diphenyl diselenide (DPDS) in various biological model organisms. DPDS possesses antioxidant activity, confirmed in several in vitro and in vivo systems, and thus has a protective effect against hepatic, renal and gastric injuries, in addition to its neuroprotective activity. The activity of the compound on the central nervous system has been studied since DPDS has lipophilic characteristics, increasing adenylyl cyclase activity and inhibiting glutamate and MK-801 binding to rat synaptic membranes. Systemic administration facilitates the formation of long-term object recognition memory in mice and has a protective effect against brain ischemia and on reserpine-induced orofacial dyskinesia in rats. On the other hand, DPDS may be toxic, mainly because of its interaction with thiol groups. In the yeast Saccharomyces cerevisiae, the molecule acts as a pro-oxidant by depleting free glutathione. Administration to mice during cadmium intoxication has the opposite effect, reducing oxidative stress in various tissues. DPDS is a potent inhibitor of d-aminolevulinate dehydratase and chronic exposure to high doses of this compound has central effects on mouse brain, as well as liver and renal toxicity. Genotoxicity of this compound has been assessed in bacteria, haploid and diploid yeast and in a tumor cell line.
Resumo:
Upper gastrointestinal endoscopy is often accompanied by tachycardia which is known to be an important pathogenic factor in the development of myocardial ischemia. The pathogenesis of tachycardia is unknown but the condition is thought to be due to the endocrine response to endoscopy. The purpose of the present study was to investigate the effects of sedation on the endocrine response and cardiorespiratory function. Forty patients scheduled for diagnostic upper gastrointestinal endoscopy were randomized into 2 groups. While the patients in the first group did not receive sedation during upper gastrointestinal endoscopy, the patients in the second group were sedated with intravenous midazolam at the dose of 5 mg for those under 65 years or 2.5 mg for those aged 65 years or more. Midazolam was administered by slow infusion. In both groups, blood pressure, ECG tracing, heart rate, and peripheral oxygen saturation (SpO2) were monitored during endoscopy. In addition, blood samples for the determination of cortisol, glucose and C-reactive protein levels were obtained from patients in both groups prior to and following endoscopy. Heart rate and systolic arterial pressure changes were within normal limits in both groups. Comparison of the two groups regarding the values of these two parameters did not reveal a significant difference, while a statistically significant reduction in SpO2 was found in the sedation group. No significant differences in serum cortisol, glucose or C-reactive protein levels were observed between the sedated and non-sedated group. Sedation with midazolam did not reduce the endocrine response and the tachycardia developing during upper gastrointestinal endoscopy, but increased the reduction in SpO2.
Resumo:
Recombinant human thyroid-stimulating hormone (rhTSH) enhances 131I uptake, permitting a decrease in radiation for the treatment of multinodular goiter (MNG). Our objective was to evaluate the safety and efficacy of a single 0.1-mg dose of rhTSH, followed by 30 mCi 131I, in patients with MNG. Seventeen patients (15 females, 59.0 ± 13.1 years), who had never been submitted to 131I therapy, received a single 0.1-mg injection of rhTSH followed by 30 mCi 131I on the next day. Mean basal thyroid volume measured by computed tomography was 106.1 ± 64.4 mL. 131I 24-h uptake, TSH, free-T4, T3, thyroglobulin, anti-thyroid antibodies, and thyroid volume were evaluated at regular intervals of 12 months. Mean 131I 24-h uptake increased from 18.1 ± 9.7 to 49.6 ± 13.4% (P < 0.001), a median 2.6-fold increase (1.2 to 9.2). Peak hormonal levels were 10.86 ± 5.44 mU/L for TSH (a median 15.5-fold increase), 1.80 ± 0.48 ng/dL for free-T4, 204.61 ± 58.37 ng/dL for T3, and a median of 557.0 ng/mL for thyroglobulin. The adverse effects observed were hyperthyroidism (17.6%), painful thyroiditis (29.4%) and hypothyroidism (52.9%). Thyroid volume was reduced by 34.3 ± 14.3% after 6 months (P < 0.001) and by 46.0 ± 14.6% after 1 year (P < 0.001). Treatment of MNG with a single 0.1-mg dose of rhTSH, followed by a fixed amount of radioactivity of 131I, leads to an efficacious decrease in thyroid volume for the majority of the patients, with a moderate incidence of non-serious and readily treatable adverse effects.
Resumo:
Sleep loss is both common and critically relevant to our society and might lead to the abuse of psychostimulants such as amphetamines, cocaine and modafinil. Since psychoactive substance abuse often occurs within a scenario of sleep deficit, the purpose of this investigation was to compare the sleep patterns of rats challenged with cocaine (7 mg/kg, ip), methamphetamine (7 mg/kg, ip), or modafinil (100 mg/kg, ip) subsequent to paradoxical sleep deprivation (PSD) for 96 h. Our results show that, immediately after 96 h of PSD, rats (10 per group) that were injected with a psychostimulant presented lower percentages of paradoxical sleep compared to those injected with saline (P < 0.01). Regarding slow wave sleep (SWS), rats injected with psychostimulants after PSD presented a late rebound (on the second night subsequent to the injection) in the percentage of this phase of sleep when compared to PSD rats injected with saline (P < 0.05). In addition, the current study has produced evidence of the characteristic effect of each drug on sleep architecture. Home cage control rats injected with modafinil and methamphetamine showed a reduction in SWS compared with the saline group. Methamphetamine affected sleep patterns most, since it significantly reduced paradoxical sleep, SWS and sleep efficiency before and after PSD compared to control (P < 0.05). Cocaine was the psychostimulant causing the least changes in sleep pattern in relation to those observed after saline injection. Therefore, our results suggest that abuse of these psychostimulants in a PSD paradigm aggravates their impact on sleep patterns.
Resumo:
T-cell acute lymphoblastic leukemia (T-ALL) is a biologically heterogeneous disease with respect to phenotype, gene expression profile and activation of particular intracellular signaling pathways. Despite very significant improvements, current therapeutic regimens still fail to cure a portion of the patients and frequently implicate the use of aggressive protocols with long-term side effects. In this review, we focused on how deregulation of critical signaling pathways, in particular Notch, PI3K/Akt, MAPK, Jak/STAT and TGF-ß, may contribute to T-ALL. Identifying the alterations that affect intracellular pathways that regulate cell cycle and apoptosis is essential to understanding the biology of this malignancy, to define more effective markers for the correct stratification of patients into appropriate therapeutic regimens and to identify novel targets for the development of specific, less detrimental therapies for T-ALL.
Resumo:
Acid-base homeostasis maintains systemic arterial pH within a narrow range. Whereas the normal range of pH for clinical laboratories is 7.35-7.45, in vivo pH is maintained within a much narrower range. In clinical and experimental settings, blood pH can vary in response to respiratory or renal impairment. This altered pH promotes changes in vascular smooth muscle tone with impact on circulation and blood pressure control. Changes in pH can be divided into those occurring in the extracellular space (pHo) and those occurring within the intracellular space (pHi), although, extracellular and intracellular compartments influence each other. Consistent with the multiple events involved in the changes in tone produced by altered pHo, including type of vascular bed, several factors and mechanisms, in addition to hydrogen ion concentration, have been suggested to be involved. The scientific literature has many reports concerning acid-base balance and endothelium function, but these concepts are not clear about acid-base disorders and their relations with the three known mechanisms of endothelium-dependent vascular reactivity: nitric oxide (NO/cGMP-dependent), prostacyclin (PGI2/cAMP-dependent) and hyperpolarization. During the last decades, many studies have been published and have given rise to confronting data on acid-base disorder and endothelial function. Therefore, the main proposal of this review is to provide a critical analysis of the state of art and incentivate researchers to develop more studies about these issues.
Resumo:
Oxysterols are 27-carbon atom molecules resulting from autoxidation or enzymatic oxidation of cholesterol. They are present in numerous foodstuffs and have been demonstrated to be present at increased levels in the plasma of patients with cardiovascular diseases and in atherosclerotic lesions. Thus, their role in lipid disorders is widely suspected, and they might also be involved in important degenerative diseases such as Alzheimer's disease, osteoporosis, and age-related macular degeneration. Since atherosclerosis is associated with the presence of apoptotic cells and with oxidative and inflammatory processes, the ability of some oxysterols, especially 7-ketocholesterol and 7β-hydroxycholesterol, to trigger cell death, activate inflammation, and modulate lipid homeostasis is being extensively studied, especially in vitro. Thus, since there are a number of essential considerations regarding the physiological/pathophysiological functions and activities of the different oxysterols, it is important to determine their biological activities and identify their signaling pathways, when they are used either alone or as mixtures. Oxysterols may have cytotoxic, oxidative, and/or inflammatory effects, or none whatsoever. Moreover, a substantial accumulation of polar lipids in cytoplasmic multilamellar structures has been observed with cytotoxic oxysterols, suggesting that cytotoxic oxysterols are potent inducers of phospholipidosis. This basic knowledge about oxysterols contributes to a better understanding of the associated pathologies and may lead to new treatments and new drugs. Since oxysterols have a number of biological activities, and as oxysterol-induced cell death is assumed to take part in degenerative pathologies, the present review will focus on the cytotoxic activities of these compounds, the corresponding cell death signaling pathways, and associated events (oxidation, inflammation, and phospholipidosis).
Resumo:
The type of fluid used during resuscitation may have an important impact on tissue edema. We evaluated the impact of two different regimens of fluid resuscitation on hemodynamics and on lung and intestinal edema during splanchnic hypoperfusion in rabbits. The study included 16 female New Zealand rabbits (2.9 to 3.3 kg body weight, aged 8 to 12 months) with splanchnic ischemia induced by ligation of the superior mesenteric artery. The animals were randomized into two experimental groups: group I (N = 9) received 12 mL·kg-1·h-1 lactated Ringer solution and 20 mL/kg 6% hydroxyethyl starch solution; group II (N = 7) received 36 mL·kg-1·h-1 lactated Ringer solution and 20 mL/kg 0.9% saline. A segment from the ileum was isolated to be perfused. A tonometric catheter was placed in a second gut segment. Superior mesenteric artery (Q SMA) and aortic (Qaorta) flows were measured using ultrasonic flow probes. After 4 h of fluid resuscitation, tissue specimens were immediately removed for estimations of gut and lung edema. There were no differences in global and regional perfusion variables, lung wet-to-dry weight ratios and oxygenation indices between groups. Gut wet-to-dry weight ratio was significantly lower in the crystalloid/colloid-treated group (4.9 ± 1.5) than in the crystalloid-treated group (7.3 ± 2.4) (P < 0.05). In this model of intestinal ischemia, fluid resuscitation with crystalloids caused more gut edema than a combination of crystalloids and colloids.
Resumo:
The purpose of this study was to examine the effects of an exercise intervention on the total caloric intake (TCI) of breast cancer patients undergoing treatment. A secondary purpose was to determine whether or not a relationship existed between changes in TCI, body fat composition (%BF), and fatigue during the study, which lasted 6 months. Twenty females recently diagnosed with breast cancer, scheduled to undergo chemotherapy or radiation, were assigned randomly to an experimental (N = 10) or control group (N = 10). Outcome measures included TCI (3-day food diary), %BF (skinfolds), and fatigue (revised Piper Fatigue Scale). Each exercise session was conducted as follows: initial cardiovascular activity (6-12 min), followed by stretching (5-10 min), resistance training (15-30 min), and a cool-down (approximately 8 min). Significant changes in TCI were observed among groups (F1,18 = 8.582; P = 0.009), at treatments 2 and 3, and at the end of the study [experimental (1973 ± 419), control (1488 ± 418); experimental (1946 ± 437), control (1436 ± 429); experimental (2315 ± 455), control (1474 ± 294), respectively]. A significant negative correlation was found (Spearman rho(18) = -0.759; P < 0.001) between TCI and %BF and between TCI and fatigue levels (Spearman rho(18) = -0.541; P = 0.014) at the end of the study. In conclusion, the results of this study suggest that an exercise intervention administered to breast cancer patients undergoing medical treatment may assist in the mitigation of some treatment side effects, including decreased TCI, increased fatigue, and negative changes in body composition.
Resumo:
Ciliary neurotrophic factor (CNTF) is a cytokine that plays a neuroprotective role in relation to axotomized motoneurons. We determined the effect of daily subcutaneous doses of CNTF (1.2 µg/g for 5 days; N = 13) or PBS (N = 13) on the levels of mRNA for Bcl-2 and Bax, as well as the expression and inter-association of Bcl-2 and Bax proteins, and the survival of motoneurons in the spinal cord lumbar enlargement of 2-day-old Wistar rats after sciatic nerve transection. Five days after transection, the effects were evaluated on histological and molecular levels using Nissl staining, immunoprecipitation, Western blot analysis, and reverse transcriptase-polymerase chain reaction. The motoneuron survival ratio, defined as the ratio between the number of motoneurons counted on the lesioned side vs those on the unlesioned side, was calculated. This ratio was 0.77 ± 0.02 for CNTF-treated rats vs 0.53 ± 0.02 for the PBS-treated controls (P < 0.001). Treatment with CNTF modified the level of mRNA, with the expression of Bax RNA decreasing 18% (with a consequent decrease in the level of Bax protein), while the expression of Bcl-2 RNA was increased 87%, although the level of Bcl-2 protein was unchanged. The amount of Bcl-2/Bax heterodimer increased 91% over that found in the PBS-treated controls. These data show, for the first time, that the neuroprotective effect of CNTF on neonatal rat axotomized motoneurons is associated with a reduction in free Bax, due to the inhibition of Bax expression, as well as increased Bcl-2/Bax heterodimerization. Thus, the neuroprotective action of the CNTF on axotomized motoneurons can be related to the inhibition of this apoptotic pathway.
Resumo:
Besides other physiological functions, adenosine-5'-triphosphate (ATP) is also a neurotransmitter that acts on purinergic receptors. In spite of the presence of purinergic receptors in forebrain areas involved with fluid-electrolyte balance, the effect of ATP on water intake has not been investigated. Therefore, we studied the effects of intracerebroventricular (icv) injections of ATP (100, 200 and 300 nmol/µL) alone or combined with DPCPX or PPADS (P1 and P2 purinergic antagonists, respectively, 25 nmol/µL) on water intake induced by water deprivation. In addition, the effect of icv ATP was also tested on water intake induced by intragastric load of 12% NaCl (2 mL/rat), acute treatment with the diuretic/natriuretic furosemide (20 mg/kg), icv angiotensin II (50 ng/µL) or icv carbachol (a cholinergic agonist, 4 nmol/µL), on sodium depletion-induced 1.8% NaCl intake, and on food intake induced by food deprivation. Male Holtzman rats (280-320 g, N = 7-11) had cannulas implanted into the lateral ventricle. Icv ATP (300 nmol/µL) reduced water intake induced by water deprivation (13.1 ± 1.9 vs saline: 19.0 ± 1.4 mL/2 h; P < 0.05), an effect blocked by pre-treatment with PPADS, but not DPCPX. Icv ATP also reduced water intake induced by NaCl intragastric load (5.6 ± 0.9 vs saline: 10.3 ± 1.4 mL/2 h; P < 0.05), acute furosemide treatment (0.5 ± 0.2 vs saline: 2.3 ± 0.6 mL/15 min; P < 0.05), and icv angiotensin II (2.2 ± 0.8 vs saline: 10.4 ± 2.0 mL/2 h; P < 0.05), without changing icv carbachol-induced water intake, sodium depletion-induced 1.8% NaCl intake and food deprivation-induced food intake. These data suggest that central ATP, acting on purinergic P2 receptors, reduces water intake induced by intracellular and extracellular dehydration.
Resumo:
In this article, we will review some behavioral, pharmacological and neurochemical studies from our laboratory on mice, which might contribute to our understanding of the complex processes of memory consolidation and reconsolidation. We discuss the post-training (memory consolidation) and post-reactivation (memory reconsolidation) effects of icv infusions of hemicholinium, a central inhibitor of acetylcholine synthesis, of intraperitoneal administration of L-NAME, a non-specific inhibitor of nitric oxide synthase, of intrahippocampal injections of an inhibitor of the transcription factor NF-κB, and the exposure of mice to a new learning situation on retention performance of an inhibitory avoidance response. All treatments impair long-term memory consolidation and retrieval-induced memory processes different from extinction, probably in accordance with the "reconsolidation hypothesis".
Resumo:
Sleep disturbances have far-reaching effects on the neuroendocrine and immune systems and may be linked to disease manifestation. Sleep deprivation can accelerate the onset of lupus in NZB/NZWF1 mice, an animal model of severe systemic lupus erythematosus. High prolactin (PRL) concentrations are involved in the pathogenesis of systemic lupus erythematosus in human beings, as well as in NZB/NZWF1 mice. We hypothesized that PRL could be involved in the earlier onset of the disease in sleep-deprived NZB/NZWF1 mice. We also investigated its binding to dopaminergic receptors, since PRL secretion is mainly controlled by dopamine. Female NZB/NZWF1 mice aged 9 weeks were deprived of sleep using the multiple platform method. Blood samples were taken for the determination of PRL concentrations and quantitative receptor autoradiography was used to map binding of the tritiated dopaminergic receptor ligands [³H]-SCH23390, [³H]-raclopride and [³H]-WIN35,428 to D1 and D2 dopaminergic receptors and dopamine transporter sites throughout the brain, respectively. Sleep deprivation induced a significant decrease in plasma PRL secretion (2.58 ± 0.95 ng/mL) compared with the control group (25.25 ± 9.18 ng/mL). The binding to D1 and D2 binding sites was not significantly affected by sleep deprivation; however, dopamine transporter binding was significantly increased in subdivisions of the caudate-putamen - posterior (16.52 ± 0.5 vs 14.44 ± 0.6), dorsolateral (18.84 ± 0.7 vs 15.97 ± 0.7) and ventrolateral (24.99 ± 0.5 vs 22.54 ± 0.7 µCi/g), in the sleep-deprived mice when compared to the control group. These results suggest that PRL is not the main mechanism involved in the earlier onset of the disease observed in sleep-deprived NZB/NZWF1 mice and the reduction of PRL concentrations after sleep deprivation may be mediated by modifications in the dopamine transporter sites of the caudate-putamen.