957 resultados para Bio-optical model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To compare immediate and staged approach implant placement in circumferential defects treated with deproteinized bovine bone mineral (DBBM); hidroxyapatite/tricalcium phosphate (HA/TP); autogenous bone (Ab); and coagulum (Cg); upon implant stability, osseointegration and alveolar crest maintenance. Materials and methods: Six dogs underwent extractions of lower premolars, bilaterally. Twelve weeks later four bone defects (6 mm wide/4 mm long) were drilled at one side and randomly filled with DBBM; HA/TP; Ab; and Cg, respectively, and left to heal (staged approach). Eight weeks later one implant (Osseospeed™, AstraTech) was placed in experimental sites. At the same session four defects were drilled on contra-lateral side and implants were inserted immediately after biomaterials grafting (immediate approach). Animals were euthanized 8 weeks later. Implant stability was measured by resonance frequency analysis (RFA) at installation and after sacrifice. Ground sections were prepared for bone contact (BIC); bone area (BA); distance implant shoulder-bone crest (IS-C); distance implant shoulder first bone contact (IS-B); and areas occupied by soft tissue. Results: The BA and BIC were superior in the staged approach. The Cg exhibited higher BIC and BA as compared with other materials at the total implant body (P = 0.004 and 0.012, respectively). The DBBM, HA/TP and Ab groups rendered similar BA and BIC. The immediate approach resulted in less crest resorption compared to staged approach. The biomaterials did not affect the IS-C and IS-B measurements. Particles area tended to be higher in DBBM group than HA/TP (P = 0.15), while soft tissue infiltrate was higher in DBBM group when used in the immediate approach (P = 0.04). The RFA indicated gain in stability in the staged approach (P = 0.002). The correlation test between RFA vs. BIC and BA demonstrated inferior stability for DBBM group in immediate approach (P = 0.01). Conclusions: Implants placed in healed defects resulted in better stability as a consequence of higher BIC and BA. The Cg alone rendered increased BIC compared to other materials in both approaches. Immediate approach should be preferable to staged approach in terms of alveolar crest maintenance. The BIC and BA values did not vary between micro and macro-threads in this experimental model. Implants installed in sites filled with DBBM in immediate approach were less stable. © 2011 John Wiley & Sons A/S.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcription process is crucial to life and the enzyme RNA polymerase (RNAP) is the major component of the transcription machinery. The development of single-molecule techniques, such as magnetic and optical tweezers, atomic-force microscopy and single-molecule fluorescence, increased our understanding of the transcription process and complements traditional biochemical studies. Based on these studies, theoretical models have been proposed to explain and predict the kinetics of the RNAP during the polymerization, highlighting the results achieved by models based on the thermodynamic stability of the transcription elongation complex. However, experiments showed that if more than one RNAP initiates from the same promoter, the transcription behavior slightly changes and new phenomenona are observed. We proposed and implemented a theoretical model that considers collisions between RNAPs and predicts their cooperative behavior during multi-round transcription generalizing the Bai et al. stochastic sequence-dependent model. In our approach, collisions between elongating enzymes modify their transcription rate values. We performed the simulations in Mathematica® and compared the results of the single and the multiple-molecule transcription with experimental results and other theoretical models. Our multi-round approach can recover several expected behaviors, showing that the transcription process for the studied sequences can be accelerated up to 48% when collisions are allowed: the dwell times on pause sites are reduced as well as the distance that the RNAPs backtracked from backtracking sites. © 2013 Costa et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Because of ethical and medico-legal aspects involved in the training of cutaneous surgical skills on living patients, human cadavers and living animals, it is necessary the search for alternative and effective forms of training simulation. Aims: To propose and describe an alternative methodology for teaching and learning the principles of cutaneous surgery in a medical undergraduate program by using a chicken-skin bench model. Materials and Methods: One instructor for every four students, teaching materials on cutaneous surgical skills, chicken trunks, wings, or thighs, a rigid platform support, needled threads, needle holders, surgical blades with scalpel handles, rat-tooth tweezers, scissors, and marking pens were necessary for training simulation. Results: A proposal for simulation-based training on incision, suture, biopsy, and on reconstruction techniques using a chicken-skin bench model distributed in several sessions and with increasing levels of difficultywas structured. Both feedback and objective evaluations always directed to individual students were also outlined. Conclusion: The teaching of a methodology for the principles of cutaneous surgery using a chicken-skin bench model versatile, portable, easy to assemble, and inexpensive is an alternative and complementary option to the armamentarium of methods based on other bench models described. © Indian Journal of Dermatology 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, the structural refinement, morphology and optical properties of barium strontium molybdate [(Ba1-x Sr x )MoO4 with x = 0, 0.25, 0.50, 0.75 and 1] crystals, synthesized by the co-precipitation (drop-by-drop) method, are reported. The crystals obtained were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, and Fourier transform-Raman (FT-Raman) and Fourier transform-infrared (FT-IR) spectroscopies. The shapes of the crystals were observed by means of field-emission scanning electron microscopy (FE-SEM). The optical properties were investigated using ultraviolet-visible (UV-Vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD patterns, Rietveld refinement, and FT-Raman and FT-IR spectra showed that all of the crystals are monophasic with a scheelite-type tetragonal structure. The refined lattice parameters and atomic positions were employed to model the [BaO8], [SrO8] and [MoO4] clusters in the tetragonal lattices. The FE-SEM images indicate that increased x content produces a decrease in the crystal size and modifications in the crystal shape. UV-Vis spectra indicated a decrease in the optical band gap with an increase in x in the (Ba1-x Sr x )MoO4 crystals. Finally, a decrease in the intensity of PL emission is apparent with an increase in x up to 0.75 in the (Ba1-x Sr x )MoO4 crystal lattice when excited by a wavelength of 350nm, probably associated with the degree of structural order-disorder. © 2013 International Union of Crystallography Printed in Singapore - all rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling is a step to perform a finite element analysis. Different methods of model construction are reported in literature, as the Bio-CAD modeling. The purpose of this study was to perform a model evaluation and application using two methods of Bio-CAD modeling from human edentulous hemi-mandible on the finite element analysis. From CT scans of dried human skull was reconstructed a stereolithographic model. Two methods of modeling were performed: STL conversion approach (Model 1) associated to STL simplification and reverse engineering approach (Model 2). For finite element analysis was used the action of lateral pterygoid muscle as loading condition to assess total displacement (D), equivalent von-Mises stress (VM) and maximum principal stress (MP). Two models presented differences on the geometry regarding surface number (1834 (model 1); 282 (model 2)). Were observed differences in finite element mesh regarding element number (30428 nodes/16683 elements (model 1); 15801 nodes/8410 elements (model 2). D, VM and MP stress areas presented similar distribution in two models. The values were different regarding maximum and minimum values of D (ranging 0-0.511 mm (model 1) and 0-0.544 mm (model 2), VM stress (6.36E-04-11.4 MPa (model 1) and 2.15E-04-14.7 MPa (model 2) and MP stress (-1.43-9.14 MPa (model 1) and -1.2-11.6 MPa (model 2). From two methods of Bio-CAD modeling, the reverse engineering presented better anatomical representation compared to the STL conversion approach. The models presented differences in the finite element mesh, total displacement and stress distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents a process of cellulose thermal degradation with bio-hydrogen generation and zinc nanostructures synthesis. Production of zinc nanowires and zinc nanoflowers was performed by a novel processes based on cellulose pyrolysis, volatiles reforming and direct reduction of ZnO. The bio-hydrogen generated in situ promoted the ZnO reduction with Zn nanostructures formation by vapor–solid (VS) route. The cellulose and cellulose/ZnO samples were characterized by thermal analyses (TG/DTG/DTA) and the gases evolved were analyzed by FTIR spectroscopy (TG/FTIR). The hydrogen was detected by TPR (Temperature Programmed Reaction) tests. The results showed that in the presence of ZnO the cellulose thermal degradation produced larger amounts of H2 when compared to pure cellulose. The process was also carried out in a tubular furnace with N2 atmosphere, at temperatures up to 900 °C, and different heating rates. The nanostructures growth was catalyst-free, without pressure reduction, at temperatures lower than those required in the carbothermal reduction of ZnO with fossil carbon. The nanostructures were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The optical properties were investigated by photoluminescence (PL). One mechanism was presented in an attempt to explain the synthesis of zinc nanostructures that are crystalline, were obtained without significant re-oxidation and whose morphologies are dependent on the heating rates of the process. This route presents a potential use as an industrial process taking into account the simple operational conditions, the low costs of cellulose and the importance of bio-hydrogen and nanostructured zinc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Usually we observe that Bio-physical systems or Bio-chemical systems are many a time based on nanoscale phenomenon in different host environments, which involve many particles can often not be solved explicitly. Instead a physicist, biologist or a chemist has to rely either on approximate or numerical methods. For a certain type of systems, called integrable in nature, there exist particular mathematical structures and symmetries which facilitate the exact and explicit description. Most integrable systems, we come across are low-dimensional, for instance, a one-dimensional chain of coupled atoms in DNA molecular system with a particular direction or exist as a vector in the environment. This theoretical research paper aims at bringing one of the pioneering ‘Reaction-Diffusion’ aspects of the DNA-plasma material system based on an integrable lattice model approach utilizing quantized functional algebras, to disseminate the new developments, initiate novel computational and design paradigms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Translucent wavelength-division multiplexing optical networks use sparse placement of regenerators to overcome physical impairments and wavelength contention introduced by fully transparent networks, and achieve a performance close to fully opaque networks at a much less cost. In previous studies, we addressed the placement of regenerators based on static schemes, allowing for only a limited number of regenerators at fixed locations. This paper furthers those studies by proposing a dynamic resource allocation and dynamic routing scheme to operate translucent networks. This scheme is realized through dynamically sharing regeneration resources, including transmitters, receivers, and electronic interfaces, between regeneration and access functions under a multidomain hierarchical translucent network model. An intradomain routing algorithm, which takes into consideration optical-layer constraints as well as dynamic allocation of regeneration resources, is developed to address the problem of translucent dynamic routing in a single routing domain. Network performance in terms of blocking probability, resource utilization, and running times under different resource allocation and routing schemes is measured through simulation experiments.