1000 resultados para Beam interferences
Resumo:
This paper reviews recent experimental activity in the area of optimization, control, and application of laser accelerated proton beams, carried out at the Rutherford Appleton Laboratory and the Laboratoire pour l’Utilisation des Lasers Intenses 100 TW facility in France. In particular, experiments have investigated the role of the scale length at the rear of the plasma in reducing target-normal-sheath-acceleration acceleration efficiency. Results match with recent theoretical predictions and provide information in view of the feasibility of proton fast-ignition applications. Experiments aiming to control the divergence of the proton beams have investigated the use of a laser-triggered microlens, which employs laser-driven transient electric fields in cylindrical geometry, enabling to focus the emitted
protons and select monochromatic beam lets out of the broad spectrum beam. This approach could be advantageous in view
of a variety of applications. The use of laser-driven protons as a particle probe for transient field detection has been developed and
applied to a number of experimental conditions. Recent work in this area has focused on the detection of large-scale self-generated magnetic fields in laser-produced plasmas and the investigation of fields associated to the propagation of relativistic electron both on the surface and in the bulk of targets irradiated by high-power laser pulses.
Resumo:
The standard linear-quadratic (LQ) survival model for external beam radiotherapy is reviewed with particular emphasis on studying how different schedules of radiation treatment planning may be affected by different tumour repopulation kinetics. The LQ model is further examined in the context of tumour control probability (TCP) models. The application of the Zaider and Minerbo non-Poissonian TCP model incorporating the effect of cellular repopulation is reviewed. In particular the recent development of a cell cycle model within the original Zaider and Minerbo TCP formalism is highlighted. Application of this TCP cell-cycle model in clinical treatment plans is explored and analysed.
Resumo:
A stable relativistic ion acceleration regime for thin foils irradiated by circularly polarized laser pulses is suggested. In this regime, the "light-sail" stage of radiation pressure acceleration for ions is smoothly connected with the initial relativistic "hole-boring" stage, and a defined relationship between laser intensity I(0), foil density n(0), and thickness l(0) should be satisfied. For foils with a wide range of n(0), the required I(0) and l(0) for the regime are theoretically estimated and verified with the particle-in-cell code ILLUMINATION. It is shown for the first time by 2D simulations that high-density monoenergetic ion beams with energy above GeV/u and divergence of 10 degrees are produced by circularly polarized lasers at intensities of 10(22) W/cm(2), which are within reach of current laser systems.
Resumo:
The collision processes of highly charged ions with electrons have been studied with an electron beam ion trap. Resonant inner-shell processes such as dielectronic recombination and resonant excitation double autoionization were investigated by observing the number ratio of extracted ions with adjacent charge states. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A method of injecting metallic elements into an electron-beam ion trap (EBIT) is described. The method is advantageous over the conventional coaxial and pulsed injection methods in two ways: (a) complicated switching of injection and extraction beams can be avoided when extracting beams of highly charged ions from the EBIT and (b) a beam of stable intensity can be achieved. This method may be applicable to any metallic elements or metallic compounds that have vapor pressures of similar to 0.1 Pa at a temperature lower than 1900 degrees C. We have employed this method for the extraction of highly charged ions of Bi, Er, Fe, and Ho. (c) 2006 American Institute of Physics.
Resumo:
This paper presents the basic physics underlying the operation of electron beam ion traps and sources, with the machine physics underlying their operation being described in some detail. Predictions arising from this description are compared with some diagnostic measurements.
Resumo:
An electron-beam ion trap (EBIT) has been designed for atomic physics experiments at the Queen's University of Belfast. A pair of permanent magnets will be used to produce an axial magnetic field to compress an electron beam, whereas pairs of superconducting magnets have been used for traditional EBITs. The design of the new EBIT is detailed and possible experiments are explained to show the feasibility of the EBIT. (C) 2004 American Institute of Physics.
Resumo:
A Thomson scattering system has been installed at the Tokyo electron beam ion trap for probing characteristics of the electron beam. A YVO4 green laser beam was injected antiparallel to the electron beam. The image of the Thomson scattering light from the electron beam has been observed using a charged-coupled device camera. By using a combination of interference filters, the spectral distribution of the Thomson scattering light has been measured. The Doppler shift observed for the scattered light is consistent with the beam energy. The beam radius dependence was investigated as a function of the beam energy, the beam current, and the magnetic field at the trap region. The variation of the measured beam radius against the beam current and the magnetic field were similar to those in Herrmann's prediction. The beam radius as a function of the beam energy was also similar to Herrmann's prediction but seemed to become larger at low energy. (C) 2002 American Institute of Physics.