987 resultados para Baire-1 Function
Resumo:
There has been much recent interest in the cardiovascular benefits of dietary isoflavones. The aim of the present in vitro studies was to investigate potential anti-thrombogenic and anti-atherogenic effects of the isoflavones genistein and daidzein in platelets, macrophages and endothelial cells. Pre-treatment with either isoflavone inhibited collagen-induced platelet aggregation in a dose-dependent manner. In a macrophage cell line (RAW 264-7) activated with interferon gamma plus lipopolysaccharide, both isoflavones were found to inhibit NO production and tumour necrosis factor alpha (TNF-alpha) secretion dose-dependently, but they did not affect mRNA levels for inducible nitric oxide synthase and cyclo-oxygenase-2. Both isoflavones also dose-dependently decreased monocyte chemoattractant protein-1 secretion induced by TNF-alpha in human umbilical vein endothelial cells. Compared with daidzein, genistein exerted greater inhibitory effects for all parameters studied. The present data contributes to our knowledge on the molecular mechanisms by which isoflavones may protect against coronary artery disease. Further studies are required to determine whether the effects of isoflavones observed in the current in vitro studies are relevant to the aetiology of coronary artery disease in vivo.
Resumo:
In this review we describe how concepts of shoot apical meristem function have developed over time. The role of the scientist is emphasized, as proposer, receiver and evaluator of ideas about the shoot apical meristem. Models have become increasingly popular over the last 250 years, and we consider their role. They provide valuable grounding for the development of hypotheses, but in addition they have a strong human element and their uptake relies on various degrees of persuasion. The most influential models are probably those that most data support, consolidating them as an insight into reality; but they also work by altering how we see meristems, re-directing us to influence the data we collect and the questions we consider meaningful.
Resumo:
The kinetics of the reactions of 1-and 2-butoxy radicals have been studied using a slow-flow photochemical reactor with GC-FID detection of reactants and products. Branching ratios between decomposition, CH3CH(O-.)CH2CH3 CH3CHO + C2H5, reaction (7), and reaction with oxygen, CH3CH(O-.)CH2CH3 + O-2 -> CH3C(O)C2H5 + HO2, reaction (6), for the 2-butoxy radical and between isomerization, CH3CH2CH2CH2O. -> CH2CH2CH2CH2OH, reaction (9), and reaction with oxygen, CH3CH2CH2CH2O. + O-2 -> C3H7CHO + HO2, reaction (8), for the 1-butoxy radical were measured as a function of oxygen concentration at atmospheric pressure over the temperature range 250-318 K. Evidence for the formation of a small fraction of chemically activated alkoxy radicals generated from the photolysis of alkyl nitrite precursors and from the exothermic reaction of 2-butyl peroxy radicals with NO was observed. The temperature dependence of the rate constant ratios for a thermalized system is given by k(7)/k(6) = 5.4 x 1026 exp[(-47.4 +/- 2.8 kJ mol(-1))/RT] molecule cm(-3) and k(9)/k(8) = 1.98 x 10(23) exp[(-22.6 +/- 3.9 kJ mol(-1))/RT] molecule cm(-3). The results agree well with the available experimental literature data at ambient temperature but the temperature dependence of the rate constant ratios is weaker than in current recommendations.
Resumo:
The rovibration partition function of CH4 was calculated in the temperature range of 100-1000 K using well-converged energy levels that were calculated by vibrational-rotational configuration interaction using the Watson Hamiltonian for total angular momenta J=0-50 and the MULTIMODE computer program. The configuration state functions are products of ground-state occupied and virtual modals obtained using the vibrational self-consistent field method. The Gilbert and Jordan potential energy surface was used for the calculations. The resulting partition function was used to test the harmonic oscillator approximation and the separable-rotation approximation. The harmonic oscillator, rigid-rotator approximation is in error by a factor of 2.3 at 300 K, but we also propose a separable-rotation approximation that is accurate within 2% from 100 to 1000 K. (C) 2004 American Institute of Physics.
Resumo:
Hypothesis: The aim of this study was to measure the mass loading effect of an active middle-ear implant (the Vibrant Soundbridge) in cadaver temporal bones. Background: Implantable middle ear hearing devices such as Vibrant Soundbridge have been used as an alternative to conventional hearing aids for the rehabilitation of sensorineural hearing loss. Other than the obvious disadvantage of requiring implantation middle ear surgery, it also applies a direct weight on the ossicular chain which, in turn, may have an impact on residual hearing. Previous studies have shown that applying a mass directly on the ossicular chain has a damping effect on its response to sound. However, little has been done to investigate the magnitude and the frequency characteristics of the mass loading effect in devices such as the Vibrant Soundbridge. Methods: Five fresh cadaver temporal bones were used. The stapes displacement was measured using laser Doppler vibrometry before and after the placement of a Vibrant Sound-bridge floating mass transducer. The effects of mass and attachment site were compared with the unloaded response. Measurements were obtained at frequencies between 0.1 and 10 kHz and at acoustic input levels of 100 dB sound pressure level. Each temporal bone acted as its own control. Results: Placement of the floating mass transducer caused a reduction of the stapes displacement. There were variations between the bones. The change of the stapes displacement varied from 0 dB to 28 dB. The effect was more prominent at frequencies above 1,000 Hz. Placing the floating mass transducer close to the incudostapedial joint reduced the mass loading effect. Conclusion: The floating mass transducer produces a measurable reduction of the stapes displacement in the temporal bone model. The effect is more prominent at high frequencies.
Resumo:
Background: Aging is associated with reduced numbers of beneficial colonic bifidobacteria and impaired immunity. Galactooligosaccharides (GOSs) stimulate the growth of bifidobacteria in younger adults, but little is known about their effects in the elderly and their immunomodulatory capacity. Objective: We assessed the effect of a prebiotic GOS mixture (B-GOS) on immune function and fecal microflora composition in healthy elderly subjects. Design: In a double-blind, placebo-controlled, crossover study, 44 elderly subjects were randomly assigned to receive either a placebo or the B-GOS treatment (5.5 g/d). Subjects consumed the treatments for 10 wk, and then went through a 4-wk washout period, before switching to the other treatment for the final 10 wk. Blood and fecal samples were collected at the beginning, middle (5 wk), and end of the test period. Predominant bacterial groups were quantified, and phagocytosis, natural killer (NK) cell activity, cytokine production, plasma cholesterol, and HDL cholesterol were measured. Results: B-GOS significantly increased the numbers of beneficial bacteria, especially bifidobacteria, at the expense of less beneficial groups compared with the baseline and placebo. Significant increases in phagocytosis, NK cell activity, and the production of antiinflammatory cytokine interleukin-10 (IL-10) and significant reduction in the production of proinflammatory cytokines (IL-6, IL-1 beta , and tumor necrosis factor-alpha) were also observed. B-GOS exerted no effects on total cholesterol or HDL-cholesterol production, however. Conclusions: B-GOS administration to healthy elderly persons resulted in positive effects on both the microflora composition and the immune response. Therefore, B-GOS may be a useful dietary candidate for the enhancement of gastrointestinal health and immune function in elderly persons. Am J Clin Nutr 2008; 88: 1438-46.
Resumo:
Epidemiological studies have suggested an inverse correlation between red wine consumption and the incidence of CVD. However, Champagne wine has not been fully investigated for its cardioprotective potential. In order to assess whether acute and moderate Champagne wine consumption is capable of modulating vascular function, we performed a randomised, placebo-controlled, cross-over intervention trial. We show that consumption of Champagne wine, but not a control matched for alcohol, carbohydrate and fruit-derived acid content, induced an acute change in endothelium-independent vasodilatation at 4 and 8 h post-consumption. Although both Champagne wine and the control also induced an increase in endothelium-dependent vascular reactivity at 4 h, there was no significant difference between the vascular effects induced by Champagne or the control at any time point. These effects were accompanied by an acute decrease in the concentration of matrix metalloproteinase (MMP-9), a significant decrease in plasma levels of oxidising species and an increase in urinary excretion of a number of phenolic metabolites. In particular, the mean total excretion of hippuric acid, protocatechuic acid and isoferulic acid were all significantly greater following the Champagne wine intervention compared with the control intervention. Our data suggest that a daily moderate consumption of Champagne wine may improve vascular performance via the delivery of phenolic constituents capable of improving NO bioavailability and reducing matrix metalloproteinase activity.
Resumo:
Soy isoflavones have been extensively studied because of their possible benefits to human health. Genistein, the major isoflavone aglycone, has received most attention; however, it undergoes extensive metabolism (e.g. conjugation with sulfuric acid) in the gut and liver, which may affect its biological proper-ties. This study investigated the antioxidant activity and free radical-scavenging properties of genistein, genistein-4'-sulfate and genistein-4'-7-disulfate as well as their effect on platelet aggregation and monocyte and endothelial function. Electron spin resonance spectroscopy (ESR) and spin trapping data and other standard antioxidant assays indicated that genistein is a relatively weak antioxidant compared to quercetin and that its sulfated metabolites are even less effective. Furthermore, genistein-4'-sulfate was less potent than genistem, and genistein-4'-7-disulfate even less potent, at inhibiting collagen-induced platelet aggregation, nitric oxide (NO) production by macrophages, and secretion by primary human endothelial cells of monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1). The current data suggest that sulfation of genistein, with the associated loss of hydroxyl groups, decreases its antioxidant activity and its effect on platelet aggregation, inflammation, cell adhesion and chemotaxis. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Ulcerative colitis (UC) is characterized by impairment of the epithelial barrier and the formation of ulcer-type lesions, which result in local leaks and generalized alterations of mucosal tight junctions. Ultimately, this results in increased basal permeability. Although disruption of the epithelial barrier in the gut is a hallmark of inflammatory bowel disease and intestinal infections, it remains unclear whether barrier breakdown is an initiating event of UC or rather a consequence of an underlying inflammation, evidenced by increased production of proinflammatory cytokines. UC is less common in smokers, suggesting that the nicotine in cigarettes may ameliorate disease severity. The mechanism behind this therapeutic effect is still not fully understood, and indeed it remains unclear if nicotine is the true protective agent in cigarettes. Nicotine is metabolized in the body into a variety of metabolites and can also be degraded to form various breakdown products. It is possible these metabolites or degradation products may be the true protective or curative agents. A greater understanding of the pharmacodynamics and kinetics of nicotine in relation to the immune system and enhanced knowledge of out permeability defects in UC are required to establish the exact protective nature of nicotine and its metabolites in UC. This review suggests possible hypotheses for the protective mechanism of nicotine in UC, highlighting the relationship between gut permeability and inflammation, and indicates where in the pathogenesis of the disease nicotine may mediate its effect.
Resumo:
Background: Greatly increasing dietary flaxseed oil [rich in the n-3 polyunsaturated fatty acid (PUFA) alpha-linolenic acid (ALA)] or fish oil [rich in the long-chain n-3 PUFAs eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] can reduce markers of immune cell function. The effects of more modest doses are unclear, and it is not known whether ALA has the same effects as its long-chain derivatives. Objective: The objective was to determine the effects of enriching the diet with ALA or EPA+DHA on immune outcomes representing key functions of human neutrophils, monocytes, and lymphocytes. Design: In a placebo-controlled, double-blind, parallel study, 150 healthy men and women aged 25-72 y were randomly assigned to I of 5 interventions: placebo (no additional n-3 PUFAs), 4.5 or 9.5 g ALA/d, and 0.77 or 1.7 g EPA+DHA/d for 6 mo. The n-3 PUFAs were provided in 25 g fat spread plus 3 oil capsules. Blood samples were taken at 0, 3, and 6 mo. Results: The fatty acid composition of peripheral blood mononuclear cell phospholipids was significantly different in the groups with higher intakes of ALA or EPA+DHA. The interventions did not alter the percentages of neutrophils or monocytes engaged in phagocytosis of Escherichia coli or in phagocytic activity, the percentages of neutrophils or monocytes undergoing oxidative burst in response to E. coli or phorbol ester, the proliferation of lymphocytes in response to a T cell mitogen, the production of numerous cytokines by monocytes and lymphocytes, or the in vivo delayed-type hypersensitivity response. Conclusion: An intake of f less than or equal to9.5 g ALA/d or less than or equal to1.7 g EPA+DHA/d does not alter the functional activity of neutrophils, monocytes, or lymphocytes, but it changes the fatty acid composition of mononuclear cells.
Resumo:
Soya isoflavones are thought to be cardioprotective due to their structural similarity to oestrogen. In order to investigate the effect of soya isoflavones on markers of endothelial function we conducted a randomised, double-blind, placebo-controlled, cross-over study with thirty healthy postmenopausal women. The women consumed cereal bars, with or without soya isoflavones (50 mg/d), for 8 weeks, separated by an 8-week washout period. Systemic arterial complince (SAC), isobaric arterial compliance (IAC), flow-mediated endothelium-dependent vasodilation (FMD) and nitroglycerine-mediated endothelium-independent vasodilation (NMD) were measured at the beginning of the study and after each intervention period. Blood pressure (BP) and plasma concentrations of nitrite and nitrate (NOx) and endothelin-1 (ET-1) were measured at the beginning and end of each intervention period. NMD was 13.4 (sem 2.0) % at baseline and 15.5 (sem 1.1) % after isoflavone treatment compared with 12.4 (sem 1.0) % after placebo treatment (P=0.03). NOx increased from 27.7 (sem 2.7) to 31.1 (sem 3.2) mu m after isoflavones treatment compared with 25.4 (sem 1.5) to 20.4 (sem 1.1) mu m after placebo treatment (P=0.003) and a significant increase in the NOx:ET-1 ratio (P=0.005) was observed after the isoflavone treatment compared with placebo. A significant difference in SAC after the isoflavone and placebo treatment was observed (P=0.04). No significant difference was found in FMD, IAC, BP and ET-1. In conclusion, 8 weeks' consumption of cereals bars enriched with 50 mg soya isoflavones/d increased plasma NOx concentrations and improved endothelium-independent vasodilation in healthy postmenopausal women.
Resumo:
Dietary isoflavones are thought to be cardioprotective due to their structural similarity to oestrogen. Oestrogen is believed to have beneficial effects on endothelial function and may be one of the mechanisms by which premenopausal women are protected against CVD. Decreased NO production and endothelial NO synthase activity, and increased endothelin-1 concentrations, impaired lipoprotein metabolism and increased circulating inflammatory factors result from oestrogen deficiency. Oestrogen acts by binding to oestrogen receptors alpha and beta. Isoflavones have been shown to bind with greater affinity to the latter. Oestrogen replacement therapy is no longer thought to be a safe treatment for prevention of CVD; isoflavones are a possible alternative. Limited evidence from human intervention studies suggests that isoflavones may improve endothelial function, but the available data are not conclusive. Animal studies provide stronger support for a role of isoflavones in the vasculature, with increased vasodilation and endothelial NO synthase activity demonstrated. Cellular mechanisms underlying the effects of isoflavones on endothelial cell function are not yet clear. Possible oestrogen receptor-mediated pathways include modulation of gene transcription, and also non-genomic oestrogen receptor-mediated signalling pathways. Putative non-oestrogenic pathways include inhibition of reactive oxygen species production and up regulation of the protein kinase A pathway (increasing NO bioavailability). Further research is needed to unravel effects of isoflavones on intracellular regulation of the endothelial function. Moreover, there is an urgent need for adequately powered, robustly designed human intervention studies in order to clarify the present equivocal findings.
Resumo:
There has been much recent interest in the cardiovascular benefits of dietary isoflavones. The aim of the present in vitro studies was to investigate potential anti-thrombogenic and anti-atherogenic effects of the isoflavones genistein and daidzein in platelets, macrophages and endothelial cells. Pre-treatment with either isoflavone inhibited collagen-induced platelet aggregation in a dose-dependent manner. In a macrophage cell line (RAW 264-7) activated with interferon gamma plus lipopolysaccharide, both isoflavones were found to inhibit NO production and tumour necrosis factor alpha (TNF-alpha) secretion dose-dependently, but they did not affect mRNA levels for inducible nitric oxide synthase and cyclo-oxygenase-2. Both isoflavones also dose-dependently decreased monocyte chemoattractant protein-1 secretion induced by TNF-alpha in human umbilical vein endothelial cells. Compared with daidzein, genistein exerted greater inhibitory effects for all parameters studied. The present data contributes to our knowledge on the molecular mechanisms by which isoflavones may protect against coronary artery disease. Further studies are required to determine whether the effects of isoflavones observed in the current in vitro studies are relevant to the aetiology of coronary artery disease in vivo.
Resumo:
Fecal water (FW) has been shown to exert, in cultured cells, cytotoxic and genotoxic effects that have implications for colorectal cancer (CRC) risk. We have investigated a further biological activity of FW, namely, the ability to affect gap junctions in CACO2 cell monolayers as an index of mucosal barrier function, which is known to be disrupted in cancer. FW samples fi-om healthy, free-living, European subjects that were divided into two broad age groups, adult (40 +/- 9.7 yr; n = 53) and elderly (76 +/- 7.5 yr; n = 55) were tested for effects on gap junction using the transepithelial resistance (TER) assay. Overall, treatment of CACO2 cells with FW samples fi-om adults increased TER (+ 4 %), whereas FW from elderly subjects decreased TER (-5%); the difference between the two groups was significant (P < 0.05). We also measured several components of FW potentially associated with modulation of TER, namely, short-chain fatty acid (SCFA) and ammonia. SCFAs (propionic, acetic, and n-butyric) were significantly lower in the elderly population (-30%, -35%, and -21%, respectively, all P pound 0.01). We consider that FW modulation of in vitro epithelial barrier function is a potentially useful noninvasive biomarker, but it requires further validation to establish its relationship to CRC risk.
Resumo:
Epidemiological studies suggest that a moderate consumption of anthocyanins may be associated with protection against coronary heart disease. The main dietary sources of anthocyanins include red-coloured fruits and red wine. Although dietary anthocyanins comprise a diverse mixture of molecules, little is known how structural diversity relates to their bioavailability and biological function. The aim of the present study was to evaluate the absorption and metabolism of the 3-monoglucosides of delphinidin, cyanidin, petunidin, peonidin and malvidin in humans and to examine both the effect of consuming a red wine extract on plasma antioxidant status and on monocyte chemoattractant protein I production in healthy human subjects. After a 12-h overnight fast, seven healthy volunteers received 12 g of an anthocyanin extract and provided 13 blood samples in the 24 h following the test meal. Furthermore, urine was collected during this 24-h period. Anthocyanins were detected in their intact form in both plasma and urine samples. Other anthocyanin metabolites could also be detected in plasma and urine and were identified as glucuronides of peonidin and malvidin. Anthocyanins and their metabolites appeared in plasma about 30 min after ingestion of the test meal and reached their maximum value around 1.6 h later for glucosides and 2.5 h for glucuronides. Total urinary excretion of red wine anthocyanins was 0.05+/-0.01% of the administered dose within 24 h. About 94% of the excreted anthocyanins was found in urine within 6 h. In spite of the low concentration of anthocyanins found in plasma, an increase in the antioxidant capacity and a decrease in MCP-1 circulating levels in plasma were observed. (C) 2009 Elsevier Inc. All rights reserved.