970 resultados para Bacterial proteins
Resumo:
Transmission imaging with an environmental scanning electron microscope (ESEM) (Wet STEM) is a recent development in the field of electron microscopy, combining the simple preparation inherent to ESEM work with an alternate form of contrast available through a STEM detector. Because the technique is relatively new, there is little information available on how best to apply this technique and which samples it is best suited for. This work is a description of the sample preparation and microscopy employed by the authors for imaging bacteria with Wet STEM (scanning transmission electron microscopy). Three different bacterial samples will be presented in this study: first, used as a model system, is Escherichia coli for which the contrast mechanisms of STEM are demonstrated along with the visual effects of a dehydration-induced collapse. This collapse, although clearly in some sense artifactual, is thought to lead to structurally meaningful morphological information. Second, Wet STEM is applied to two distinct bacterial systems to demonstrate the novel types of information accessible by this approach: the plastic-producing Cupriavidus necator along with wild-type and ΔmreC knockout mutants of Salmonella enterica serovar Typhimurium. Cupriavidus necator is shown to exhibit clear internal differences between bacteria with and without plastic granules, while the ΔmreC mutant of S. Typhimurium has an internal morphology distinct from that of the wild type.
Resumo:
Transmission imaging with an environmental scanning electron microscope (ESEM) (Wet STEM) is a recent development in the field of electron microscopy, combining the simple preparation inherent to ESEM work with an alternate form of contrast available through a STEM detector. Because the technique is relatively new, there is little information available on how best to apply this technique and which samples it is best suited for. This work is a description of the sample preparation and microscopy employed by the authors for imaging bacteria with Wet STEM (scanning transmission electron microscopy). Three different bacterial samples will be presented in this study: first, used as a model system, is Escherichia coli for which the contrast mechanisms of STEM are demonstrated along with the visual effects of a dehydration-induced collapse. This collapse, although clearly in some sense artifactual, is thought to lead to structurally meaningful morphological information. Second, Wet STEM is applied to two distinct bacterial systems to demonstrate the novel types of information accessible by this approach: the plastic-producing Cupriavidus necator along with wild-type and δmreC knockout mutants of Salmonella enterica serovar Typhimurium. Cupriavidus necator is shown to exhibit clear internal differences between bacteria with and without plastic granules, while the δmreC mutant of S. Typhimurium has an internal morphology distinct from that of the wild type. © 2012 Wiley Periodicals, Inc.
Resumo:
The innately highly efficient light-powered separation of charge that underpins natural photosynthesis can be exploited for applications in photoelectrochemistry by coupling nanoscale protein photoreaction centers to man-made electrodes. Planar photoelectrochemical cells employing purple bacterial reaction centers have been constructed that produce a direct current under continuous illumination and an alternating current in response to discontinuous illumination. The present work explored the basis of the open-circuit voltage (V(OC)) produced by such cells with reaction center/antenna (RC-LH1) proteins as the photovoltaic component. It was established that an up to ~30-fold increase in V(OC) could be achieved by simple manipulation of the electrolyte connecting the protein to the counter electrode, with an approximately linear relationship being observed between the vacuum potential of the electrolyte and the resulting V(OC). We conclude that the V(OC) of such a cell is dependent on the potential difference between the electrolyte and the photo-oxidized bacteriochlorophylls in the reaction center. The steady-state short-circuit current (J(SC)) obtained under continuous illumination also varied with different electrolytes by a factor of ~6-fold. The findings demonstrate a simple way to boost the voltage output of such protein-based cells into the hundreds of millivolts range typical of dye-sensitized and polymer-blend solar cells, while maintaining or improving the J(SC). Possible strategies for further increasing the V(OC) of such protein-based photoelectrochemical cells through protein engineering are discussed.
Resumo:
We use a resistive-pulse technique to analyze molecular hybrids of single-wall carbon nanotubes (SWNTs) wrapped in either single-stranded DNA or protein. Electric fields confined in a glass capillary nanopore allow us to probe the physical size and surface properties of molecular hybrids at the single-molecule level. We find that the translocation duration of a macromolecular hybrid is determined by its hydrodynamic size and solution mobility. The event current reveals the effects of ion exclusion by the rod-shaped hybrids and possible effects due to temporary polarization of the SWNT core. Our results pave the way to direct sensing of small DNA or protein molecules in a large unmodified solid-state nanopore by using nanofilaments as carriers. © 2013 American Chemical Society.
Resumo:
Toll-like receptor 4 (TLR4) is critical for LPS recognition and cellular responses. It also recognizes some viral envelope proteins. Detection mostly results in the inflammation rather than specific antiviral responses. However, it's unclear in fish. In this report, a TLR4 gene (named as GrTLR4b) was cloned and characterized from rare minnow Gobiocypris rarus. The full length of GrTLR4b cDNA consists of 2766 nucleotides and encodes a polypeptide of 818 amino acids with an estimated molecular mass of 94,518 Da and a predicted isoelectric point of 8.41. The predicted amino acid sequence comprises a signal peptide, six leucine-rich repeat (LRR) motifs, one leucine-rich repeat C-terminal (LRRCT) motif, followed by a transmembrane segment of 23 amino acids, and a cytoplasmic region of 167 amino acids containing one Toll - interleukin 1 - receptor (TIR) motif. It's closely similar to the zebrafish (Danio rerio) TLR4b amino acid sequence with an identity of 77%. Quantitative RT-PCR analysis showed GrTLR4b mRNA was constitutive expression in gill, heart, intestine, kidney, liver, muscle and spleen tissues in healthy animals and up-regulated by viruses and bacteria. After being infected by grass carp reovirus or Aeromonas hydrophila, GrTLR4b expressions were up-regulated from 24 h post-injection and lasted until the fish became moribund (P < 0.05). These data implied that TLR4 signaling pathway could be activated by both viral and bacterial infection in rare minnow. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this study, an IL-8 homologue has been cloned and identified from a reptile, Chinese soft-shelled turtle for the first time. The full-length cDNA of turtle IL-8 was 1188 bp and contained a 312 bp open reading frame (ORF) coding for a protein of 104 amino acids. The chemokine CXC domain, which contained Glu-Leu-Arg (ELR) motif and four cysteine residues, was well conserved in turtle IL-8. The 4924 bp genomic DNA of turtle IL-8 contained four exons and three introns. Phylogenetic analysis showed that the amino acid sequence of turtle IL-8 clustered together with birds. RT-PCR analysis showed that turtle IL-8 mRNA was constitutively expressed liver, spleen, kidney, heart, blood and intestine tissues of control turtles. Real-time quantitative PCR analysis further indicated that the turtle IL-8 mRNA expression was apparent in various tissues at 8 h and up-regulated significantly during 8 h-7 d after Aeromonas hydrophila infection. The present studies will help us to understand the evolution of IL-8 molecule and the inflammatory response mechanism in reptiles. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Microcystins (MCs) are cyanobacterial toxins in water blooms that have received increasing attention as a public biohazard for human and animal health. Previous studies were mainly focused on the toxic effects on adult fish, rather than juvenile or larvae, and the response of fish immune system were usually neglected. This paper presents the first data of the effects of microcystin-LR (MC-LR) on transcription of several genes essential for early lymphoid development (Rag1, Rag2, Ikaros, GATA1, Lck and TCR alpha) and heat shock proteins (HSP90, HSP70, HSP60, HSP27) in zebrafish larvae. Relative changes of mRNA transcription were analyzed by real time PCR. The transcription of Rag1, Rag2, Ikaros, GATA1, Lck and TCR alpha were up-regulated when following exposure to 800 mu g/L MC-LR, which may indicate that specific lymphocytes differentiation and TCR/lg arrangement are induced to counteract the toxic effects of MC-LR. It was also interesting to note the dramatically increased transcription of HSP90. HSP70, HSP60 and HSP27, which may indicate their important roles as molecular chaperones under oxidative stress. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The bacterial diversity of activated sludge from submerged membrane bioreactor (SMBR) was investigated. A 16S rDNA clone library was generated, and 150 clones were screened using restriction fragment length polymorphism (RFLP). Of the screened clones, almost full-length 16S rDNA sequences of 64 clones were sequenced. Phylogenetic tree was constructed with a database containing clone sequences from this study and bacterial rDNA sequences from NCB1 for identification purposes. The 90.6% of the clones were affiliated with the two phyla Bacteroidetes (50%) and Proteobacteria (40%), and beta-, -gamma-, and delta-Proteobacteria accounted for 7.8%, 28.1%, and 4.7%, respectively. Minor portions were affiliated with the Actinobacteria and Firmicutes (both 3.1%). Only 6 out of 64 16S rDNA sequences exhibited similarities of more than 97% to classified bacterial species, which indicated that a substantial fraction of the clone sequences were derived from unknown taxa. Rarefaction analysis of operational taxonomic units (orrUs) clusters demonstrated that 150 clones screened were still insufficient to describe the whole bacterial diversity. Measurement of water quality parameter demonstrated that performance of the SMBR maintained high level, and the SMBR system remained stable during this study.
Resumo:
In Drosophila, Toll signaling cascade, which resembles the mammalian Toll-like receptor (TLR)/IL-1R signaling pathways and regulates the expression of anti-microbial peptide genes, mainly relies on peptidoglycan recognition proteins (PGRPs) for the detection of bacterial pathogens. To explore the effect of zebrafish peptidoglycan recognition protein 6 (zfPGRP6) on Toll-like receptor signaling pathway, RNA interference (siRNA) and real time quantitative PCR (RQ-PCR) methods were used to identify differentially expressed genes regulated by zfPGRP6. The target genes included TLR2, TLR3, TLR5, TLR7, TLR8, IL1R, Sterile-alpha and Armadillo motif containing protein (SARM), myeloid differentiation factor 88 (MyD88) and nuclear factor (NF)-kappa B2 (p100/p52). The results of RQ-PCR showed that RNAi-mediated Suppression of zfPGRP6 significantly down-regulated the expression of TLR2, TLR5, IL1R, SARM, MyD88 and p100/p52. The expression of beta-defensin-1 was also down-regulated in those embryos silenced by zfPGRP6. In challenge experiments to determine the anti-bacterial response to Gram-negative bacteria, RNAi knock-down of zfPGRP6 markedly increased susceptibility to Flavobacterium columnare. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
C1q is the first subcomponent of classical pathway in the complement system and a major link between innate and acquired immunities. The globular (gC1q) domain similar with C1q was also found in many non-complement C1q-domain-containing (C1qDC) proteins which have similar crystal structure to that of the multifunctional tumor necrosis factor (TNF) ligand family, and also have diverse functions. In this study, we identified a total of 52 independent gene sequences encoding C1q-domain-containing proteins through comprehensive searches of zebrafish genome, cDNA and EST databases. In comparison to 31 orthologous genes in human and different numbers in other species, a significant selective pressure was suggested during vertebrate evolution. Domain organization of C1q-domain-containing (C1qDC) proteins mainly includes a leading signal peptide, a collagen-like region of variable length, and a C-terminal C1q domain. There are 11 highly conserved residues within the C1q domain, among which 2 are invariant within the zebrafish gene set. A more extensive database searches also revealed homologous C1qDC proteins in other vertebrates, invertebrates and even bacterium, but no homologous sequences for encoding C1qDC proteins were found in many species that have a more recent evolutionary history with zebrafish. Therefore, further studies on C1q-domain-containing genes among different species will help us understand evolutionary mechanism of innate and acquired immunities.
Resumo:
ISG15 is one of the most strongly induced genes upon viral infection, interferon (IFN) stimulation, and lipopolysaccharide, (LPS) stimulation, and only one copy has been found in mammals so far. Here two fish ISG15 genes, termed CaISG15-1 and CaISG15-2, have been cloned and sequenced from UV-inactivated GCHV (grass carp haemorrhagic virus)-infected and IFN-produced CAB cells (crucian carp Carassius auratus blastulae embryonic cells) by suppression subtractive hybridization. The full-length cDNA sequences of two crucian carp ISG15 encode a 155-amino-acid protein and a 161-amino-acid protein, both of which show 78.9% identity overall and possess the characteristic structures of mammalian ISG15 proteins including two tandem ubiquitin-like domains and the C-terminal canonical LRLRGG motif. In CAB cells treated with different stimuli including active virus, UV-inactivated GCHV and IFN containing supernatant (ICS), the expression of both CaISG15-1 and CaISG15-2 was up-regulated but displayed different kinetics. Poly I:C and LPS were also able to induce an increase in mRNA for both genes. In CAB cells responsive to active GCHV, UV-inactivated GCHV, CAB ICS, Poly 1:12 and LPS, CaISG15-1 was upregulated more significantly than CaISG15-2. These results suggest that there are two ISG15 homologues in crucian carp, both of which might play distinct roles in innate immunity against viral and bacterial infection. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Peptidoglycan recognition protein (PGRP) specifically binds to peptidoglycan and is considered to be one of the pattern recognition proteins in the innate immunity of insect and mammals. Using a database mining approach and RT-PCR, multiple peptidoglycan recognition protein (PGRP) like genes have been discovered in fish including zebrafish Danio rerio, Japanese pufferfish TakiFugu rubripes and spotted green pufferfish Tetraodon nigroviridis. They share the common features of those PGRPs in arthropod and mammals, by containing a conserved PGRP domain. Based on the predicted structures, the identified zebrafish PGRP homologs resemble short and long PGRP members in arthropod and mammals. The identified PGRP genes in T. nigroviridis and TakiFugu rubripes resemble the long PGRPs, and the short PGRP genes have not been found in T. nigroviridis and TakiFugu rubripes databases. Computer modelling of these molecules revealed the presence of three alpha-helices and five or six beta-strands in all fish PGRPs reported in the present study. The long PGRP in teleost fish have multiple alternatively spliced forms, and some of the identified spliced variants, e.g., tnPGRP-L3 and tnPGRP-L4 (in: Tetraodon nigroviridis), exhibited no characters present in the PGRP homologs domain. The coding regions of zfPGRP6 (zf: zebrafish), zfPGRP2-A, zfPGRP2-B and zfPGRP-L contain five exons and four introns; however, the other PGRP-like genes including zfPGRPSC1a, zfPGRPSC2, tnPGRP-L1-, tnPGRP-L2 and frPGRP-L (fr: Takifugu rubripes) contain four exons and three introns. In zebrafish, long and short PGRP genes identified are located in different chromosomes, and an unknown locus containing another long PGRP-like gene has also been found in zebrafish, demonstrating that multiple PGRP loci may be present in fish. In zebrafish, the constitutive expressions of zfPGRP-L, zfPGRP-6 and zfPGRP-SC during ontogeny from unfertilized eggs to larvae, in different organs of adult, and the inductive expression following stimulation by Flavobacterium columnare, were detected by real-time PCR, but the levels and patterns varied for different PGRP genes, implying that different short and long PGRPs may play different roles in innate immune response. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A direct method for measuring the 5-day biochemical oxygen demand (BODS) of aquaculture samples that does not require sample dilution or bacterial and nutrient enrichment was evaluated. The regression coefficient (R-2) between the direct method and the standard method for the analyses of 32 samples from catfish ponds was 0.996. The slope of the regression line did not differ from 1.0 or the Y-intercept from 0.0 at P = 0.05. Thus, there was almost perfect agreement between the two methods. The control limits (three standard deviations of the mean) for a standard solution containing 15 mg/L each of glutamic acid and glucose were 17.4 and 20.4 mg/L. The precision of the two methods, based on eight replicate analyses of four pond water samples did not differ at P = 0.05. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
The cDNAs and genes of two different types of leucine- rich repeat-containing proteins from grass carp ( Ctenopharyngodon idellus) were cloned. Homology search revealed that the two genes, designated as GC-GARP and GC-LRG, have 37% and 32% deduced aminoacid sequence similarities with human glycoprotein A repetitions predominant precursor ( GARP) and leucine-rich alpha2-glycoprotein (LRG), respectively. The cDNAs of GC-GARP and GC-LRG encoded 664 and 339 amino acid residues, respectively. GC-GARP and GC-LRG contain many distinct structural and/or functional motifs of the leucine- rich repeat (LRR) subfamily, such as multiple conserved 11-residue segments with the consensus sequence LxxLxLxxN/CxL ( x can be any amino acid). The genes GC-GARP and GC-LRG consist of two exons, with 4,782 bp and 2,119 bp in total length, respectively. The first exon of each gene contains a small 5'-untranslated region and partial open reading frame. The putative promoter region of GC-GARP was found to contain transcription factor binding sites for GATA-1, IRF4, Oct-1, IRF-7, IRF-1, AP1, GATA-box and NFAT, and the promoter region of GC-LRG for MYC-MAX, MEIS1, ISRE, IK3, HOXA9 and C/EBP alpha. Phylogenetic analysis showed that GC-GARP and mammalian GARPs were clustered into one branch, while GC-LRG and mammalian LRGs were in another branch. The GC-GARP gene was only detected in head kidney, and GC-LRG in the liver, spleen and heart in the copepod ( Sinergasilus major)- infected grass carp, indicating the induction of gene expression by the parasite infection. The results obtained in the present study provide insight into the structure of fish LRR genes, and further study should be carried out to understand the importance of LRR proteins in host - pathogen interactions.
Resumo:
In order to identify genes encoding the outer membrane proteins (OMPs) of the myxobacter Flavobacterium columnare G(4), the expression library of the bacterium was screened by using rabbit antisera developed against its OMPs. Positive colonies of Escherichia coli M15 containing fragments encoding the bacterial OMPs were selected for cloning the relevant genes by genomic walking methods. Two genes encoding a membrane-associated zinc metalloprotease and prolyl oligopeptidase are reported in this paper. The membrane-associated zinc metalloprotease gene (map) is 1800 bp in length, coding for 449 amino acids (aa). Despite the presence of a conserved motif HEXXH for all metalloproteases, the special HEXXH similar to 32 aa similar to E motif of the F. columnare G(4) Map and its low level of identity with other reported zinc-containing metalloproteases may imply that the membrane-associated zinc metalloprotease of F. columnare G(4) represents a new family of zincins. The gene encoding prolyl oligopeptidase (Pop), a serine proteinase, is 2352 bp in length, coding for 649 aa. Sequence homology analysis revealed that the Pop is also novel as it has <50% identity with other reported prolyl oligopeptidase family proteins. The present study represents the first to employ anti-fish bacterial OMP sera to screen genes of membrane-associated proteases of fish pathogenic bacteria, and to provide necessary information for the examination of the role of the two genes in the infection and pathogenesis of F. columnare.