976 resultados para Bacterial pathogens


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the application of mathematical modeling to understanding the behavior of populations of chemotactic bacteria. The application of continuum mathematical models, in particular generalized Keller-Segel models, is discussed along with attempts to incorporate the microscale (individual) behavior on the macroscale, modeling the interaction between different species of bacteria, the interaction of bacteria with their environment, and methods used to obtain experimentally verified parameter values. We allude briefly to the role of modeling pattern formation in understanding collective behavior within bacterial populations. Various aspects of each model are discussed and areas for possible future research are postulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resistance to human skin innate defenses is crucial for survival and carriage of Staphylococcus aureus, a common cutaneous pathogen and nasal colonizer. Free fatty acids extracted from human skin sebum possess potent antimicrobial activity against S. aureus. The mechanisms by which S. aureus overcomes this host defense during colonization remain unknown. Here, we show that S. aureus IsdA, a surface protein produced in response to the host, decreases bacterial cellular hydrophobicity rendering them resistant to bactericidal human skin fatty acids and peptides. IsdA is required for survival of S. aureus on live human skin. Reciprocally, skin fatty acids prevent the production of virulence determinants and the induction of antibiotic resistance in S. aureus and other Gram-positive pathogens. A purified human skin fatty acid was effective in treating systemic and topical infections of S. aureus suggesting that our natural defense mechanisms can be exploited to combat drug-resistant pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genome of the plant-colonizing bacterium Pseudomonas fluorescens SBW25 harbors a subset of genes that are expressed specifically on plant surfaces. The function of these genes is central to the ecological success of SBW25, but their study poses significant challenges because no phenotype is discernable in vitro. Here, we describe a genetic strategy with general utility that combines suppressor analysis with IVET (SPyVET) and provides a means of identifying regulators of niche-specific genes. Central to this strategy are strains carrying operon fusions between plant environment-induced loci (EIL) and promoterless 'dapB. These strains are prototrophic in the plant environment but auxotrophic on laboratory minimal medium. Regulatory elements were identified by transposon mutagenesis and selection for prototrophs on minimal medium. Approximately 106 mutants were screened for each of 27 strains carrying 'dapB fusions to plant EIL and the insertion point for the transposon determined in approximately 2,000 putative regulator mutants. Regulators were functionally characterized and used to provide insight into EIL phenotypes. For one strain carrying a fusion to the cellulose-encoding wss operon, five different regulators were identified including a diguanylate cyclase, the flagella activator, FleQ, and alginate activator, AmrZ (AlgZ). Further rounds of suppressor analysis, possible by virtue of the SPyVET strategy, revealed an additional two regulators including the activator AlgR, and allowed the regulatory connections to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used the PCR to study the presence of two plant pathogens in archived wheat samples from a long-term experiment started in 1843. The data were used to construct a unique 160-yr time-series of the abundance of Phaeosphaeria nodorum and Mycosphaerella graminicola, two important pathogens of wheat. During the period since 1970, the relative abundance of DNA of these two pathogens in the samples has reflected the relative importance of the two wheat diseases they cause in U.K. disease surveys. Unexpectedly, changes in the ratio of the pathogens over the 160-yr period were very strongly correlated with changes in atmospheric pollution, as measured by SO2 emissions. This finding suggests that long-term, economically important, changes in pathogen populations can be influenced by anthropogenically induced environmental changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhancins are a class of metalloproteases found in some baculoviruses that enhance viral infection by degrading the peritrophic, membrane (PM) of the insect midgut. However, sequencing has revealed enhancin-like genes with 24-25% homology to viral enhancins, in the genomes of Yersinia pestis and Bacillus anthracis. AcMNPV does not encode enhancin therefore recombinant AcMNPV budded viruses (BVs) and polyhedra inclusion bodies (PIBs) were generated expressing the bacterial Enhancins. Bacterial Enhancins were found to be cytotoxic when compared to viral enhancin, however, larval bioassays suggested that the bacterial Enhancins did not enhance infection in the same way as viral Enhancin. This suggests that the bacterial Enhancins may have evolved a distinct biochemical function. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reduction of water-insoluble indigo by the recently isolated moderate thermophile, Clostridium isatidis, has been studied with the aim of developing a sustainable technology for industrial indigo reduction. The ability to reduce indigo was not shared with C. aurantibutyricum, C. celatum and C. papyrosolvens, but C. papyrosolvens could reduce indigo carmine (5,5-indigosulfonic acid), a soluble indigo derivative. The supernatant from cultures of C. isatidis, but not from cultures of the other bacteria tested, decreased indigo particle size to one-tenth diameter. Addition of madder powder, anthraquinone-2,6-disulfonic acid, and humic acid all stimulated indigo reduction by C. isatidis. Redox potentials of cultures of C. isatidis were about 100 mV more negative than those of C. aurantibutyricum, C. celatum and C. papyrosolvens, and reached –600 mV versus the SCE in the presence of indigo, but potentials were not consistently affected by the addition of the quinone compounds, which probably act by modifying the surface of the bacteria or indigo particles. It is concluded that C. isatidis can reduce indigo because (1) it produces an extracellular factor that decreases indigo particle size, and (2) it generates a sufficiently reducing potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants encounter numerous pests and pathogens in the natural environment. An appropriate response to attack by such organisms can lead to tolerance or resistance mechanisms that enable the plant to survive. Many studies concentrate on the signalling pathways that enable plants to recognize and respond to attack, and measure the downstream effect in either biochemical or molecular terms. At the whole plant level, ecologists examine the fitness costs of attack not only for the plant but also over a range of trophic levels. The links between these differing levels of study are beginning to be addressed by the adoption of molecular approaches in more ecologically relevant settings. This review will describe the different approaches used by ecologists and cell biologists in this field and will try to address the question of how we can explore the response to, and consequences, of attack by multiple enemies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical, cultural and biological methods for weed control have developed largely independently and are often concerned with weed control in different systems: physical and cultural control in annual crops and biocontrol in extensive grasslands. We discuss the strengths and limitations of four physical and cultural methods for weed control: mechanical, thermal, cutting, and intercropping, and the advantages and disadvantages of combining biological control with them. These physical and cultural control methods may increase soil nitrogen levels and alter microclimate at soil level; this may be of benefit to biocontrol agents, although physical disturbance to the soil and plant damage may be detrimental. Some weeds escape control by these methods; we suggest that these weeds may be controlled by biocontrol agents. It will be easiest to combine biological control with. re and cutting in grasslands; within arable systems it would be most promising to combine biological control (especially using seed predators and foliar pathogens) with cover-cropping, and mechanical weeding combined with foliar bacterial and possibly foliar fungal pathogens. We stress the need to consider the timing of application of combined control methods in order to cause least damage to the biocontrol agent, along with maximum damage to the weed and to consider the wider implications of these different weed control methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution and activity of communities of sulfate-reducing bacteria (SRB) and methanogenic archaea in two contrasting Antarctic sediments were investigated. Methanogenesis dominated in freshwater Lake Heywood, while sulfate reduction dominated in marine Shallow Bay. Slurry experiments indicated that 90% of the methanogenesis in Lake Heywood was acetoclastic. This finding was supported by the limited diversity of clones detected in a Lake Heywood archaeal clone library, in which most clones were closely related to the obligate acetate-utilizing Methanosaeta concilii. The Shallow Bay archaeal clone library contained clones related to the C-1-utilizing Methanolobus and Methanococcoides and the H-2-utilizing Methanogenium. Oligonucleotide probing of RNA extracted directly from sediment indicated that archaea represented 34% of the total prokaryotic signal in Lake Heywood and that Methanosaeta was a major component (13.2%) of this signal. Archaea represented only 0.2% of the total prokaryotic signal in RNA extracted from Shallow Bay sediments. In the Shallow Bay bacterial clone library, 10.3% of the clones were SRB-like, related to Desulfotalea/Desulforhopalus, Desulfofaba, Desulfosarcina, and Desulfobacter as well as to the sulfur and metal oxidizers comprising the Desulfuromonas cluster. Oligonucleotide probes for specific SRB clusters indicated that SRB represented 14.7% of the total prokaryotic signal, with Desulfotalea/Desulforhopalus being the dominant SRB group (10.7% of the total prokaryotic signal) in the Shallow Bay sediments; these results support previous results obtained for Arctic sediments. Methanosaeta and Desulfotalea/Desulforhopalus appear to be important in Lake Heywood and Shallow Bay, respectively, and may be globally important in permanently low-temperature sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decay-accelerating factor (CD55), a regulator of the alternative and classical pathways of complement activation, is expressed on all serum-exposed cells. It is used by pathogens, including many enteroviruses and uropathogenic Escherichia coli, as a receptor prior to infection. We describe the x-ray structure of a pathogen-binding fragment of human CD55 at 1.7 A resolution containing two of the three domains required for regulation of human complement. We have used mutagenesis to map biological functions onto the molecule; decay-accelerating activity maps to a single face of the molecule, whereas bacterial and viral pathogens recognize a variety of different sites on CD55.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The breakdown of glucosinolates, a group of thioglucoside compounds found in cruciferous plants, is catalysed by dietary or microbial myrosinase. This hydrolysis releases a range of breakdown products among which are the isothiocyanates, which have been implicated in the cancer-protective effects of cruciferous vegetables. The respective involvement of plant myrosinase and gut bacterial myrosinase in the conversion, in vivo, of glucosinolates into isothiocyanates was investigated in sixteen Fischer 344 rats. Glucosinolate hydrolysis in gnotobiotic rats harbouring a whole human faecal flora (Flora+) was compared with that in germ-free rats (Flora-). Rats were offered a diet where plant myrosinase was either active (Myro+) or inactive (Myro-). The conversion of prop-2-enyl glucosinolate and benzyl glucosinolate to their related isothiocyanates, allyl isothiocyanate and benzyl isothiocyanate, was estimated using urinary mercapturic acids, which are endproducts of isothiocyanate metabolism. The highest excretion of urinary mercapturic acids was found when only plant myrosinase was active (Flora-, Myro+ treatment). Lower excretion was observed when both plant and microbial myrosinases were active (Flora+, Myro+ treatment). Excretion of urinary mercapturic acids when only microbial myrosinase was active (Flora+, Myro- treatment) was low and comparable with the levels in the absence of myrosinase (Flora-, Myro- treatment). No intact glucosinolates were detected in the faeces of rats from the Flora+ treatments confirming the strong capacity of the microflora to break down glucosinolates. The results confirm that plant myrosinase can catalyse substantial release of isothiocyanates in vivo. The results also suggest that the human microflora may, in some circumstances, reduce the proportion of isothiocyanates available for intestinal absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fermentation system was designed to model the human colonic microflora in vitro. The system provided a framework of mucin beads to encourage the adhesion of bacteria, which was encased within a dialysis membrane. The void between the beads was inoculated with faeces from human donors. Water and metabolites were removed from the fermentation by osmosis using a solution of polyethylene glycol (PEG). The system was concomitantly inoculated alongside a conventional single-stage chemostat. Three fermentations were carried out using inocula from three healthy human donors. Bacterial populations from the chemostat and biofilm system were enumerated using fluorescence in situ hybridization. The culture fluid was also analysed for its short-chain fatty acid (SCFA) content. A higher cell density was achieved in the biofilm fermentation system (taking into account the contribution made by the bead-associated bacteria) as compared with the chemostat, owing to the removal of water and metabolites. Evaluation of the bacterial populations revealed that the biofilm system was able to support two distinct groups of bacteria: bacteria growing in association with the mucin beads and planktonic bacteria in the culture fluid. Furthermore, distinct differences were observed between populations in the biofilm fermenter system and the chemostat, with the former supporting higher populations of clostridia and Escherichia coli. SCFA levels were lower in the biofilm system than in the chemostat, as in the former they were removed via the osmotic effect of the PEG. These experiments demonstrated the potential usefulness of the biofilm system for investigating the complexity of the human colonic microflora and the contribution made by sessile bacterial populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial biofilms were first described in 1936 and subsequent research has unveiled their ubiquity and physiological distinction from free-living (planktonic) microorganisms. In light of their emerging significance this review examines the bacterial biofilms within the human gastrointestinal tract. Attention is paid to the nature of these mucosally- associated populations, focusing on the protected environment afforded by the continual secretion of mucus by host epithelial cells. It also examines the attributes possessed by various bacterial species that facilitate habitation of this microenvironment. Additionally, contrasts are drawn between planktonic bacteria of the lumen and sessile (biofilm) bacteria growing in close association with host cells and food particles. In particular the different fermentation profiles exhibited by these two fractions are discussed. The potential role of these communities in host health and disease, as well as the stabilisation of the lumenal population, is also considered. Reference is made to the state of mutualism that exists between these little understood populations and the host epithelia, thus highlighting their ecological significance in terms of gastrointestinal health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is presented for determining the time to first division of individual bacterial cells growing on agar media. Bacteria were inoculated onto agar-coated slides and viewed by phase-contrast microscopy. Digital images of the growing bacteria were captured at intervals and the time to first division estimated by calculating the "box area ratio". This is the area of the smallest rectangle that can be drawn around an object, divided by the area of the object itself. The box area ratios of cells were found to increase suddenly during growth at a time that correlated with cell division as estimated by visual inspection of the digital images. This was caused by a change in the orientation of the two daughter cells that occurred when sufficient flexibility arose at their point of attachment. This method was used successfully to generate lag time distributions for populations of Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa, but did not work with the coccoid organism Staphylococcus aureus. This method provides an objective measure of the time to first cell division, whilst automation of the data processing allows a large number of cells to be examined per experiment. (c) 2005 Elsevier B.V. All rights reserved.