975 resultados para Average models
Resumo:
Changing the topology of a railway network can greatly affect its capacity. Railway networks however can be altered in a multitude of different ways. As each way has significant immediate and long term financial ramifications, it is a difficult task to decide how and where to expand the network. In response some railway capacity expansion models (RCEM) have been developed to help capacity planning activities, and to remove physical bottlenecks in the current railway system. The exact purpose of these models is to decide given a fixed budget, where track duplications and track sub divisions should be made, in order to increase theoretical capacity most. These models are high level and strategic, and this is why increases to the theoretical capacity is concentrated upon. The optimization models have been applied to a case study to demonstrate their application and their worth. The case study evidently shows how automated approaches of this nature could be a formidable alternative to current manual planning techniques and simulation. If the exact effect of track duplications and sub-divisions can be sufficiently approximated, this approach will be very applicable.
Resumo:
Grazing is a major land use in Australia's rangelands. The 'safe' livestock carrying capacity (LCC) required to maintain resource condition is strongly dependent on climate. We reviewed: the approaches for quantifying LCC; current trends in climate and their effect on components of the grazing system; implications of the 'best estimates' of climate change projections for LCC; the agreement and disagreement between the current trends and projections; and the adequacy of current models of forage production in simulating the impact of climate change. We report the results of a sensitivity study of climate change impacts on forage production across the rangelands, and we discuss the more general issues facing grazing enterprises associated with climate change, such as 'known uncertainties' and adaptation responses (e.g. use of climate risk assessment). We found that the method of quantifying LCC from a combination of estimates (simulations) of long-term (>30 years) forage production and successful grazier experience has been well tested across northern Australian rangelands with different climatic regions. This methodology provides a sound base for the assessment of climate change impacts, even though there are many identified gaps in knowledge. The evaluation of current trends indicated substantial differences in the trends of annual rainfall (and simulated forage production) across Australian rangelands with general increases in most of western Australian rangelands ( including northern regions of the Northern Territory) and decreases in eastern Australian rangelands and south-western Western Australia. Some of the projected changes in rainfall and temperature appear small compared with year-to-year variability. Nevertheless, the impacts on rangeland production systems are expected to be important in terms of required managerial and enterprise adaptations. Some important aspects of climate systems science remain unresolved, and we suggest that a risk-averse approach to rangeland management, based on the 'best estimate' projections, in combination with appropriate responses to short-term (1-5 years) climate variability, would reduce the risk of resource degradation. Climate change projections - including changes in rainfall, temperature, carbon dioxide and other climatic variables - if realised, are likely to affect forage and animal production, and ecosystem functioning. The major known uncertainties in quantifying climate change impacts are: (i) carbon dioxide effects on forage production, quality, nutrient cycling and competition between life forms (e.g. grass, shrubs and trees); and (ii) the future role of woody plants including effects of. re, climatic extremes and management for carbon storage. In a simple example of simulating climate change impacts on forage production, we found that increased temperature (3 degrees C) was likely to result in a decrease in forage production for most rangeland locations (e. g. -21% calculated as an unweighted average across 90 locations). The increase in temperature exacerbated or reduced the effects of a 10% decrease/increase in rainfall respectively (-33% or -9%). Estimates of the beneficial effects of increased CO2 (from 350 to 650 ppm) on forage production and water use efficiency indicated enhanced forage production (+26%). The increase was approximately equivalent to the decline in forage production associated with a 3 degrees C temperature increase. The large magnitude of these opposing effects emphasised the importance of the uncertainties in quantifying the impacts of these components of climate change. We anticipate decreases in LCC given that the 'best estimate' of climate change across the rangelands is for a decline (or little change) in rainfall and an increase in temperature. As a consequence, we suggest that public policy have regard for: the implications for livestock enterprises, regional communities, potential resource damage, animal welfare and human distress. However, the capability to quantify these warnings is yet to be developed and this important task remains as a challenge for rangeland and climate systems science.
Resumo:
Genetic models partitioning additive and non-additive genetic effects for populations tested in replicated multi-environment trials (METs) in a plant breeding program have recently been presented in the literature. For these data, the variance model involves the direct product of a large numerator relationship matrix A, and a complex structure for the genotype by environment interaction effects, generally of a factor analytic (FA) form. With MET data, we expect a high correlation in genotype rankings between environments, leading to non-positive definite covariance matrices. Estimation methods for reduced rank models have been derived for the FA formulation with independent genotypes, and we employ these estimation methods for the more complex case involving the numerator relationship matrix. We examine the performance of differing genetic models for MET data with an embedded pedigree structure, and consider the magnitude of the non-additive variance. The capacity of existing software packages to fit these complex models is largely due to the use of the sparse matrix methodology and the average information algorithm. Here, we present an extension to the standard formulation necessary for estimation with a factor analytic structure across multiple environments.
Resumo:
The Davis Growth Model (a dynamic steer growth model encompassing 4 fat deposition models) is currently being used by the phenotypic prediction program of the Cooperative Research Centre (CRC) for Beef Genetic Technologies to predict P8 fat (mm) in beef cattle to assist beef producers meet market specifications. The concepts of cellular hyperplasia and hypertrophy are integral components of the Davis Growth Model. The net synthesis of total body fat (kg) is calculated from the net energy available after accounting tor energy needs for maintenance and protein synthesis. Total body fat (kg) is then partitioned into 4 fat depots (intermuscular, intramuscular, subcutaneous, and visceral). This paper reports on the parameter estimation and sensitivity analysis of the DNA (deoxyribonucleic acid) logistic growth equations and the fat deposition first-order differential equations in the Davis Growth Model using acslXtreme (Hunstville, AL, USA, Xcellon). The DNA and fat deposition parameter coefficients were found to be important determinants of model function; the DNA parameter coefficients with days on feed >100 days and the fat deposition parameter coefficients for all days on feed. The generalized NL2SOL optimization algorithm had the fastest processing time and the minimum number of objective function evaluations when estimating the 4 fat deposition parameter coefficients with 2 observed values (initial and final fat). The subcutaneous fat parameter coefficient did indicate a metabolic difference for frame sizes. The results look promising and the prototype Davis Growth Model has the potential to assist the beef industry meet market specifications.
Resumo:
Coalescence between two droplets in a turbulent liquid-liquid dispersion is generally viewed as a consequence of forces exerted on the drop-pair squeezing out the intervening continuous phase to a critical thickness. A new synthesis is proposed herein which models the film drainage as a stochastic process driven by a suitably idealized random process for the fluctuating force. While the true test of the model lies in detailed parameter estimations with measurement of drop-size distributions in coalescing dispersions, experimental measurements on average coalescence frequencies lend preliminary support to the model.
Resumo:
Diffusive transport is a universal phenomenon, throughout both biological and physical sciences, and models of diffusion are routinely used to interrogate diffusion-driven processes. However, most models neglect to take into account the role of volume exclusion, which can significantly alter diffusive transport, particularly within biological systems where the diffusing particles might occupy a significant fraction of the available space. In this work we use a random walk approach to provide a means to reconcile models that incorporate crowding effects on different spatial scales. Our work demonstrates that coarse-grained models incorporating simplified descriptions of excluded volume can be used in many circumstances, but that care must be taken in pushing the coarse-graining process too far.
Resumo:
Over the last two decades, there has been an increasing awareness of, and interest in, the use of spatial moment techniques to provide insight into a range of biological and ecological processes. Models that incorporate spatial moments can be viewed as extensions of mean-field models. These mean-field models often consist of systems of classical ordinary differential equations and partial differential equations, whose derivation, at some point, hinges on the simplifying assumption that individuals in the underlying stochastic process encounter each other at a rate that is proportional to the average abundance of individuals. This assumption has several implications, the most striking of which is that mean-field models essentially neglect any impact of the spatial structure of individuals in the system. Moment dynamics models extend traditional mean-field descriptions by accounting for the dynamics of pairs, triples and higher n-tuples of individuals. This means that moment dynamics models can, to some extent, account for how the spatial structure affects the dynamics of the system in question.
Resumo:
The present study set out to test the hypothesis through field and simulation studies that the incorporation of short-term summer legumes, particularly annual legume lablab (Lablab purpureus cv. Highworth), in a fallow-wheat cropping system will improve the overall economic and environmental benefits in south-west Queensland. Replicated, large plot experiments were established at five commercial properties by using their machineries, and two smaller plot experiments were established at two intensively researched sites (Roma and St George). A detailed study on various other biennial and perennial summer forage legumes in rotation with wheat and influenced by phosphorus (P) supply (10 and 40 kg P/ha) was also carried out at the two research sites. The other legumes were lucerne (Medicago sativa), butterfly pea (Clitoria ternatea) and burgundy bean (Macroptilium bracteatum). After legumes, spring wheat (Triticum aestivum) was sown into the legume stubble. The annual lablab produced the highest forage yield, whereas germination, establishment and production of other biennial and perennial legumes were poor, particularly in the red soil at St George. At the commercial sites, only lablab-wheat rotations were experimented, with an increased supply of P in subsurface soil (20 kg P/ha). The lablab grown at the commercial sites yielded between 3 and 6 t/ha forage yield over 2-3 month periods, whereas the following wheat crop with no applied fertiliser yielded between 0.5 to 2.5 t/ha. The wheat following lablab yielded 30% less, on average, than the wheat in a fallow plot, and the profitability of wheat following lablab was slightly higher than that of the wheat following fallow because of greater costs associated with fallow management. The profitability of the lablab-wheat phase was determined after accounting for the input costs and additional costs associated with the management of fallow and in-crop herbicide applications for a fallow-wheat system. The economic and environmental benefits of forage lablab and wheat cropping were also assessed through simulations over a long-term climatic pattern by using economic (PreCAPS) and biophysical (Agricultural Production Systems Simulation, APSIM) decision support models. Analysis of the long-term rainfall pattern (70% in summer and 30% in winter) and simulation studies indicated that ~50% time a wheat crop would not be planted or would fail to produce a profitable crop (grain yield less than 1 t/ha) because of less and unreliable rainfall in winter. Whereas forage lablab in summer would produce a profitable crop, with a forage yield of more than 3 t/ha, ~90% times. Only 14 wheat crops (of 26 growing seasons, i.e. 54%) were profitable, compared with 22 forage lablab (of 25 seasons, i.e. 90%). An opportunistic double-cropping of lablab in summer and wheat in winter is also viable and profitable in 50% of the years. Simulation studies also indicated that an opportunistic lablab-wheat cropping can reduce the potential runoff+drainage by more than 40% in the Roma region, leading to improved economic and environmental benefits.
Resumo:
1. Many organisms inhabit strongly fluctuating environments but their demography and population dynamics are often analysed using deterministic models and elasticity analysis, where elasticity is defined as the proportional change in population growth rate caused by a proportional change in a vital rate. Deterministic analyses may not necessarily be informative because large variation in a vital rate with a small deterministic elasticity may affect the population growth rate more than a small change in a less variable vital rate having high deterministic elasticity. 2. We analyse a stochastic environment model of the red kangaroo (Macropus rufus), a species inhabiting an environment characterized by unpredictable and highly variable rainfall, and calculate the elasticity of the stochastic growth rate with respect to the mean and variability in vital rates. 3. Juvenile survival is the most variable vital rate but a proportional change in the mean adult survival rate has a much stronger effect on the stochastic growth rate. 4. Even if changes in average rainfall have a larger impact on population growth rate, increased variability in rainfall may still be important also in long-lived species. The elasticity with respect to the standard deviation of rainfall is comparable to the mean elasticities of all vital rates but the survival in age class 3 because increased variation in rainfall affects both the mean and variability of vital rates. 5. Red kangaroos are harvested and, under the current rainfall pattern, an annual harvest fraction of c. 20% would yield a stochastic growth rate about unity. However, if average rainfall drops by more than c. 10%, any level of harvesting may be unsustainable, emphasizing the need for integrating climate change predictions in population management and increase our understanding of how environmental stochasticity translates into population growth rate.
Resumo:
Understanding the effects of different types and quality of data on bioclimatic modeling predictions is vital to ascertaining the value of existing models, and to improving future models. Bioclimatic models were constructed using the CLIMEX program, using different data types – seasonal dynamics, geographic (overseas) distribution, and a combination of the two – for two biological control agents for the major weed Lantana camara L. in Australia. The models for one agent, Teleonemia scrupulosa Stål (Hemiptera:Tingidae) were based on a higher quality and quantity of data than the models for the other agent, Octotoma scabripennis Guérin-Méneville (Coleoptera: Chrysomelidae). Predictions of the geographic distribution for Australia showed that T. scrupulosa models exhibited greater accuracy with a progressive improvement from seasonal dynamics data, to the model based on overseas distribution, and finally the model combining the two data types. In contrast, O. scabripennis models were of low accuracy, and showed no clear trends across the various model types. These case studies demonstrate the importance of high quality data for developing models, and of supplementing distributional data with species seasonal dynamics data wherever possible. Seasonal dynamics data allows the modeller to focus on the species response to climatic trends, while distributional data enables easier fitting of stress parameters by restricting the species envelope to the described distribution. It is apparent that CLIMEX models based on low quality seasonal dynamics data, together with a small quantity of distributional data, are of minimal value in predicting the spatial extent of species distribution.
Resumo:
Nuclear hormone receptors, such as the ecdysone receptor, often display a large amount of induced fit to ligands. The size and shape of the binding pocket in the EcR subunit changes markedly on ligand binding, making modelling methods such as docking extremely challenging. It is, however, possible to generate excellent 3D QSAR models for a given type of ligand, suggesting that the receptor adopts a relatively restricted number of binding site configurations or [`]attractors'. We describe the synthesis, in vitro binding and selected in vivo toxicity data for [gamma]-methylene [gamma]-lactams, a new class of high-affinity ligands for ecdysone receptors from Bovicola ovis (Phthiraptera) and Lucilia cuprina (Diptera). The results of a 3D QSAR study of the binding of methylene lactams to recombinant ecdysone receptor protein suggest that this class of ligands is indeed recognized by a single conformation of the EcR binding pocket.
Resumo:
Following an invariant-imbedding approach, we obtain analytical expressions for the ensemble-averaged resistance (ρ) and its Sinai’s fluctuations for a one-dimensional disordered conductor in the presence of a finite electric field F. The mean resistance shows a crossover from the exponential to the power-law length dependence with increasing field strength in agreement with known numerical results. More importantly, unlike the zero-field case the resistance distribution saturates to a Poissonian-limiting form proportional to A‖F‖exp(-A‖F‖ρ) for large sample lengths, where A is constant.
Resumo:
Hypertension, obesity, dyslipidemia and dysglycemia constitute metabolic syndrome, a major public health concern, which is associated with cardiovascular mortality. High dietary salt (NaCl) is the most important dietary risk factor for elevated blood pressure. The kidney has a major role in salt-sensitive hypertension and is vulnerable to harmful effects of increased blood pressure. Elevated serum urate is a common finding in these disorders. While dysregulation of urate excretion is associated with cardiovascular diseases, present studies aimed to clarify the role of xanthine oxidoreductase (XOR), i.e. xanthine dehydrogenase (XDH) and its post-translational isoform xanthine oxidase (XO), in cardiovascular diseases. XOR yields urate from hypoxanthine and xanthine. Low oxygen levels upregulate XOR in addition to other factors. In present studies higher renal XOR activity was found in hypertension-prone rats than in the controls. Furthermore, NaCl intake increased renal XOR dose-dependently. To clarify whether XOR has any causal role in hypertension, rats were kept on NaCl diets for different periods of time, with or without a XOR inhibitor, allopurinol. While allopurinol did not alleviate hypertension, it prevented left ventricular and renal hypertrophy. Nitric oxide synthases (NOS) produce nitric oxide (NO), which mediates vasodilatation. A paucity of NO, produced by NOS inhibition, aggravated hypertension and induced renal XOR, whereas NO generating drug, alleviated salt-induced hypertension without changes in renal XOR. Zucker fa/fa rat is an animal model of metabolic syndrome. These rats developed substantial obesity and modest hypertension and showed increased hepatic and renal XOR activities. XOR was modified by diet and antihypertensive treatment. Cyclosporine (CsA) is a fungal peptide and one of the first-line immunosuppressive drugs used in the management of organ transplantation. Nephrotoxicity ensue high doses resulting in hypertension and limit CsA use. CsA increased renal XO substantially in salt-sensitive rats on a high NaCl diet, indicating a possible role for this reactive oxygen species generating isoform in CsA nephrotoxicity. Renal hypoxia, common to these rodent models of hypertension and obesity, is one of the plausible XOR inducing factors. Although XOR inhibition did not prevent hypertension, present experimental data indicate that XOR plays a role in the pathology of salt-induced cardiac and renal hypertrophy.