925 resultados para Automation and robotics
Resumo:
In this article we describe a semantic localization dataset for indoor environments named ViDRILO. The dataset provides five sequences of frames acquired with a mobile robot in two similar office buildings under different lighting conditions. Each frame consists of a point cloud representation of the scene and a perspective image. The frames in the dataset are annotated with the semantic category of the scene, but also with the presence or absence of a list of predefined objects appearing in the scene. In addition to the frames and annotations, the dataset is distributed with a set of tools for its use in both place classification and object recognition tasks. The large number of labeled frames in conjunction with the annotation scheme make this dataset different from existing ones. The ViDRILO dataset is released for use as a benchmark for different problems such as multimodal place classification and object recognition, 3D reconstruction or point cloud data compression.
Resumo:
Queueing systems constitute a central tool in modeling and performance analysis. These types of systems are in our everyday life activities, and the theory of queueing systems was developed to provide models for forecasting behaviors of systems subject to random demand. The practical and useful applications of the discrete-time queues make the researchers to con- tinue making an e ort in analyzing this type of models. Thus the present contribution relates to a discrete-time Geo/G/1 queue in which some messages may need a second service time in addition to the rst essential service. In day-to-day life, there are numerous examples of queueing situations in general, for example, in manufacturing processes, telecommunication, home automation, etc, but in this paper a particular application is the use of video surveil- lance with intrusion recognition where all the arriving messages require the main service and only some may require the subsidiary service provided by the server with di erent types of strategies. We carry out a thorough study of the model, deriving analytical results for the stationary distribution. The generating functions of the number of messages in the queue and in the system are obtained. The generating functions of the busy period as well as the sojourn times of a message in the server, the queue and the system are also provided.
Resumo:
In the past few years, human facial age estimation has drawn a lot of attention in the computer vision and pattern recognition communities because of its important applications in age-based image retrieval, security control and surveillance, biomet- rics, human-computer interaction (HCI) and social robotics. In connection with these investigations, estimating the age of a person from the numerical analysis of his/her face image is a relatively new topic. Also, in problems such as Image Classification the Deep Neural Networks have given the best results in some areas including age estimation. In this work we use three hand-crafted features as well as five deep features that can be obtained from pre-trained deep convolutional neural networks. We do a comparative study of the obtained age estimation results with these features.
Resumo:
The main objectives of this thesis are to validate an improved principal components analysis (IPCA) algorithm on images; designing and simulating a digital model for image compression, face recognition and image detection by using a principal components analysis (PCA) algorithm and the IPCA algorithm; designing and simulating an optical model for face recognition and object detection by using the joint transform correlator (JTC); establishing detection and recognition thresholds for each model; comparing between the performance of the PCA algorithm and the performance of the IPCA algorithm in compression, recognition and, detection; and comparing between the performance of the digital model and the performance of the optical model in recognition and detection. The MATLAB © software was used for simulating the models. PCA is a technique used for identifying patterns in data and representing the data in order to highlight any similarities or differences. The identification of patterns in data of high dimensions (more than three dimensions) is too difficult because the graphical representation of data is impossible. Therefore, PCA is a powerful method for analyzing data. IPCA is another statistical tool for identifying patterns in data. It uses information theory for improving PCA. The joint transform correlator (JTC) is an optical correlator used for synthesizing a frequency plane filter for coherent optical systems. The IPCA algorithm, in general, behaves better than the PCA algorithm in the most of the applications. It is better than the PCA algorithm in image compression because it obtains higher compression, more accurate reconstruction, and faster processing speed with acceptable errors; in addition, it is better than the PCA algorithm in real-time image detection due to the fact that it achieves the smallest error rate as well as remarkable speed. On the other hand, the PCA algorithm performs better than the IPCA algorithm in face recognition because it offers an acceptable error rate, easy calculation, and a reasonable speed. Finally, in detection and recognition, the performance of the digital model is better than the performance of the optical model.
Resumo:
Combinatorial optimization is a complex engineering subject. Although formulation often depends on the nature of problems that differs from their setup, design, constraints, and implications, establishing a unifying framework is essential. This dissertation investigates the unique features of three important optimization problems that can span from small-scale design automation to large-scale power system planning: (1) Feeder remote terminal unit (FRTU) planning strategy by considering the cybersecurity of secondary distribution network in electrical distribution grid, (2) physical-level synthesis for microfluidic lab-on-a-chip, and (3) discrete gate sizing in very-large-scale integration (VLSI) circuit. First, an optimization technique by cross entropy is proposed to handle FRTU deployment in primary network considering cybersecurity of secondary distribution network. While it is constrained by monetary budget on the number of deployed FRTUs, the proposed algorithm identi?es pivotal locations of a distribution feeder to install the FRTUs in different time horizons. Then, multi-scale optimization techniques are proposed for digital micro?uidic lab-on-a-chip physical level synthesis. The proposed techniques handle the variation-aware lab-on-a-chip placement and routing co-design while satisfying all constraints, and considering contamination and defect. Last, the first fully polynomial time approximation scheme (FPTAS) is proposed for the delay driven discrete gate sizing problem, which explores the theoretical view since the existing works are heuristics with no performance guarantee. The intellectual contribution of the proposed methods establishes a novel paradigm bridging the gaps between professional communities.
Design Optimization of Modern Machine-drive Systems for Maximum Fault Tolerant and Optimal Operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.
Resumo:
In this paper, the problem of semantic place categorization in mobile robotics is addressed by considering a time-based probabilistic approach called dynamic Bayesian mixture model (DBMM), which is an improved variation of the dynamic Bayesian network. More specifically, multi-class semantic classification is performed by a DBMM composed of a mixture of heterogeneous base classifiers, using geometrical features computed from 2D laserscanner data, where the sensor is mounted on-board a moving robot operating indoors. Besides its capability to combine different probabilistic classifiers, the DBMM approach also incorporates time-based (dynamic) inferences in the form of previous class-conditional probabilities and priors. Extensive experiments were carried out on publicly available benchmark datasets, highlighting the influence of the number of time-slices and the effect of additive smoothing on the classification performance of the proposed approach. Reported results, under different scenarios and conditions, show the effectiveness and competitive performance of the DBMM.
Resumo:
Purpose: The purpose of this work is to increase the possibilities of designing building components for specific demands to increase the building’s value, and to investigate how the possibilities can be affected by automating the production process. Method: The theoretical framework, which this study is based on, was collected using literature studies and was thereafter combined with the empirics, which were retrieved from qualitative methods as interviews and planned observations. A case study was made of the building Ormhuset in Jönköping. Findings: The objective of this work is to investigate the possibilities for designing roofs by using new automation methods for the production process of wooden roof structures. This study implies that parametric design can be used to generate new innovative shapes and designs that are optimised according to specific criteria. Furthermore, an increased use of automation in the production process of wooden roof trusses result in cheaper roof trusses, regardless of their shapes. The generated optimized designs are therefore cheaper and easier to produce using more automation in the production process. Implications: If parametric design is used, almost any kind of shapes can be generated and optimised. To ensure manufacturability of a design, an early connection between architect and manufacturer is important. Furthermore, increased use of automation can lead to easier and faster production of roof trusses and investing in more automation can be relevant for companies with large production volumes. Using digital files to control the manufacturing machines is time saving. There are alternative manufacturing methods for advanced roof structurers in wood, which are better suited for production, which cannot be rationalized as for roof trusses. Constraints for increased automation are often a high investment cost and limited space. Limitations: If the study is performed on another case than Ormhuset and with other respondents, the result might have differed but could be similar, why this study is not generally valid but only shows one possible outcome.
Resumo:
Companies operating in the wood processing industry need to increase their productivity by implementing automation technologies in their production systems. An increasing global competition and rising raw material prizes challenge their competitiveness. Yet, too extensive automation brings risks such as a deterioration in situation awareness and operator deskilling. The concept of Levels of Automation is generally seen as means to achieve a balanced task allocation between the operators’ skills and competences and the need for automation technology relieving the humans from repetitive or hazardous work activities. The aim of this thesis was to examine to what extent existing methods for assessing Levels of Automation in production processes are applicable in the wood processing industry when focusing on an improved competitiveness of production systems. This was done by answering the following research questions (RQ): RQ1: What method is most appropriate to be applied with measuring Levels of Automation in the wood processing industry? RQ2: How can the measurement of Levels of Automation contribute to an improved competitiveness of the wood processing industry’s production processes? Literature reviews were used to identify the main characteristics of the wood processing industry affecting its automation potential and appropriate assessment methods for Levels of Automation in order to answer RQ1. When selecting the most suitable method, factors like the relevance to the target industry, application complexity or operational level the method is penetrating were important. The DYNAMO++ method, which covers both a rather quantitative technical-physical and a more qualitative social-cognitive dimension, was seen as most appropriate when taking into account these factors. To answer RQ 2, a case study was undertaken at a major Swedish manufacturer of interior wood products to point out paths how the measurement of Levels of Automation contributes to an improved competitiveness of the wood processing industry. The focus was on the task level on shop floor and concrete improvement suggestions were elaborated after applying the measurement method for Levels of Automation. Main aspects considered for generalization were enhancements regarding ergonomics in process design and cognitive support tools for shop-floor personnel through task standardization. Furthermore, difficulties regarding the automation of grading and sorting processes due to the heterogeneous material properties of wood argue for a suitable arrangement of human intervention options in terms of work task allocation. The application of a modified version of DYNAMO++ reveals its pros and cons during a case study which covers a high operator involvement in the improvement process and the distinct predisposition of DYNAMO++ to be applied in an assembly system.
Resumo:
In the field of multiscale analysis of signals, including images, the wavelet transform is one of the most attractive and powerful tool due to its ability to focus on signals structures at different scales. Wavelet Transform at different scales is successfully applied to image characterization (which can be applied to a watermarking scheme) and multiscale singularity detection and processing. In this work we show further research of computation of multifractals properties such as the multifractal spectrum (D(alpha)) applied to dye stained images of natural terrain. This can be useful for statically describing preferential flow path geometry.