931 resultados para Automatic theorem proving
Resumo:
This talk illustrates how results from various Stata commands can be processed efficiently for inclusion in customized reports. A two-step procedure is proposed in which results are gathered and archived in the first step and then tabulated in the second step. Such an approach disentangles the tasks of computing results (which may take long) and preparing results for inclusion in presentations, papers, and reports (which you may have to do over and over). Examples using results from model estimation commands and various other Stata commands such as tabulate, summarize, or correlate are presented. Users will also be shown how to dynamically link results into word processors or into LaTeX documents.
Resumo:
A plan to construct a canal through the Kra Isthmus in Southern Thailand has been proposed many times since the 17th century. The proposed canal would become an alternative route to the over-crowded Straits of Malacca. In this paper, we attempt to utilize a Geographical Information System (GIS) to calculate the realistic distances between ports that would be affected by the Kra Canal and to estimate the economic impact of the canal using a simulation model based on spatial economics. We find that China, India, Japan, and Europe gain the most from the construction of the canal, besides Thailand. On the other hand, the routes through the Straits of Malacca are largely beneficial to Malaysia, Brunei, and Indonesia, besides Singapore. Thus, it is beneficial for all ASEAN member countries that the Kra Canal and the Straits of Malacca coexist and complement one another.
Resumo:
Proof-Carrying Code (PCC) is a general approach to mobile code safety in which programs are augmented with a certificate (or proof). The intended benefit is that the program consumer can locally validate the certificate w.r.t. the "untrustcd" program by means of a certificate checker a process which should be much simpler, efficient, and automatic than generating the original proof. The practical uptake of PCC greatly depends on the existence of a variety of enabling technologies which allow both proving programs correct and replacing a costly verification process by an efficient checking proceduri on th( consumer side. In this work we propose Abstraction- Carrying Code (ACC), a novel approach which uses abstract interpretation as enabling technology. We argue that the large body of applications of abstract interpretation to program verification is amenable to the overall PCC scheme. In particular, we rely on an expressive class of safely policies which can be defined over different abstract domains. We use an abstraction (or abstract model) of the program computed by standard static analyzers as a certificate. The validity of the abstraction on ihe consumer side is checked in a single pass by a very efficient and specialized abstract-interpreter. We believe that ACC brings the expressiveness, flexibility and automation which is inherent in abstract interpretation techniques to the area of mobile code safety.
Resumo:
This paper describes a preprocessing module for improving the performance of a Spanish into Spanish Sign Language (Lengua de Signos Espanola: LSE) translation system when dealing with sparse training data. This preprocessing module replaces Spanish words with associated tags. The list with Spanish words (vocabulary) and associated tags used by this module is computed automatically considering those signs that show the highest probability of being the translation of every Spanish word. This automatic tag extraction has been compared to a manual strategy achieving almost the same improvement. In this analysis, several alternatives for dealing with non-relevant words have been studied. Non-relevant words are Spanish words not assigned to any sign. The preprocessing module has been incorporated into two well-known statistical translation architectures: a phrase-based system and a Statistical Finite State Transducer (SFST). This system has been developed for a specific application domain: the renewal of Identity Documents and Driver's License. In order to evaluate the system a parallel corpus made up of 4080 Spanish sentences and their LSE translation has been used. The evaluation results revealed a significant performance improvement when including this preprocessing module. In the phrase-based system, the proposed module has given rise to an increase in BLEU (Bilingual Evaluation Understudy) from 73.8% to 81.0% and an increase in the human evaluation score from 0.64 to 0.83. In the case of SFST, BLEU increased from 70.6% to 78.4% and the human evaluation score from 0.65 to 0.82.
Resumo:
Although there has been a lot of interest in recognizing and understanding air traffic control (ATC) speech, none of the published works have obtained detailed field data results. We have developed a system able to identify the language spoken and recognize and understand sentences in both Spanish and English. We also present field results for several in-tower controller positions. To the best of our knowledge, this is the first time that field ATC speech (not simulated) is captured, processed, and analyzed. The use of stochastic grammars allows variations in the standard phraseology that appear in field data. The robust understanding algorithm developed has 95% concept accuracy from ATC text input. It also allows changes in the presentation order of the concepts and the correction of errors created by the speech recognition engine improving it by 17% and 25%, respectively, absolute in the percentage of fully correctly understood sentences for English and Spanish in relation to the percentages of fully correctly recognized sentences. The analysis of errors due to the spontaneity of the speech and its comparison to read speech is also carried out. A 96% word accuracy for read speech is reduced to 86% word accuracy for field ATC data for Spanish for the "clearances" task confirming that field data is needed to estimate the performance of a system. A literature review and a critical discussion on the possibilities of speech recognition and understanding technology applied to ATC speech are also given.
Resumo:
This work is part of an on-going collaborative project between the medical and signal processing communities to promote new research efforts on automatic OSA (Obstructive Apnea Syndrome) diagnosis. In this paper, we explore the differences noted in phonetic classes (interphoneme) across groups (control/apnoea) and analyze their utility for OSA detection
Resumo:
This paper describes a novel method to enhance current airport surveillance systems used in Advanced Surveillance Monitoring Guidance and Control Systems (A-SMGCS). The proposed method allows for the automatic calibration of measurement models and enhanced detection of nonideal situations, increasing surveillance products integrity. It is based on the definition of a set of observables from the surveillance processing chain and a rule based expert system aimed to change the data processing methods
Resumo:
We describe how to use a Granular Linguistic Model of a Phenomenon (GLMP) to assess e-learning processes. We apply this technique to evaluate algorithm learning using the GRAPHs learning environment.
Resumo:
We propose an analysis for detecting procedures and goals that are deterministic (i.e., that produce at most one solution at most once),or predicates whose clause tests are mutually exclusive (which implies that at most one of their clauses will succeed) even if they are not deterministic. The analysis takes advantage of the pruning operator in order to improve the detection of mutual exclusion and determinacy. It also supports arithmetic equations and disequations, as well as equations and disequations on terms,for which we give a complete satisfiability testing algorithm, w.r.t. available type information. Information about determinacy can be used for program debugging and optimization, resource consumption and granularity control, abstraction carrying code, etc. We have implemented the analysis and integrated it in the CiaoPP system, which also infers automatically the mode and type information that our analysis takes as input. Experiments performed on this implementation show that the analysis is fairly accurate and efficient.
Resumo:
Here, a novel and efficient moving object detection strategy by non-parametric modeling is presented. Whereas the foreground is modeled by combining color and spatial information, the background model is constructed exclusively with color information, thus resulting in a great reduction of the computational and memory requirements. The estimation of the background and foreground covariance matrices, allows us to obtain compact moving regions while the number of false detections is reduced. Additionally, the application of a tracking strategy provides a priori knowledge about the spatial position of the moving objects, which improves the performance of the Bayesian classifier
Resumo:
One important issue emerging strongly in agriculture is related with the automatization of tasks, where the optical sensors play an important role. They provide images that must be conveniently processed. The most relevantimage processing procedures require the identification of green plants, in our experiments they come from barley and corn crops including weeds, so that some types of action can be carried out, including site-specific treatments with chemical products or mechanical manipulations. Also the identification of textures belonging to the soil could be useful to know some variables, such as humidity, smoothness or any others. Finally, from the point of view of the autonomous robot navigation, where the robot is equipped with the imaging system, some times it is convenient to know not only the soil information and the plants growing in the soil but also additional information supplied by global references based on specific areas. This implies that the images to be processed contain textures of three main types to be identified: green plants, soil and sky if any. This paper proposes a new automatic approach for segmenting these main textures and also to refine the identification of sub-textures inside the main ones. Concerning the green identification, we propose a new approach that exploits the performance of existing strategies by combining them. The combination takes into account the relevance of the information provided by each strategy based on the intensity variability. This makes an important contribution. The combination of thresholding approaches, for segmenting the soil and the sky, makes the second contribution; finally the adjusting of the supervised fuzzy clustering approach for identifying sub-textures automatically, makes the third finding. The performance of the method allows to verify its viability for automatic tasks in agriculture based on image processing
Resumo:
We report on a detailed study of the application and effectiveness of program analysis based on abstract interpretation to automatic program parallelization. We study the case of parallelizing logic programs using the notion of strict independence. We first propose and prove correct a methodology for the application in the parallelization task of the information inferred by abstract interpretation, using a parametric domain. The methodology is generic in the sense of allowing the use of different analysis domains. A number of well-known approximation domains are then studied and the transformation into the parametric domain defined. The transformation directly illustrates the relevance and applicability of each abstract domain for the application. Both local and global analyzers are then built using these domains and embedded in a complete parallelizing compiler. Then, the performance of the domains in this context is assessed through a number of experiments. A comparatively wide range of aspects is studied, from the resources needed by the analyzers in terms of time and memory to the actual benefits obtained from the information inferred. Such benefits are evaluated both in terms of the characteristics of the parallelized code and of the actual speedups obtained from it. The results show that data flow analysis plays an important role in achieving efficient parallelizations, and that the cost of such analysis can be reasonable even for quite sophisticated abstract domains. Furthermore, the results also offer significant insight into the characteristics of the domains, the demands of the application, and the trade-offs involved.