921 resultados para Atkinson, Ti-Grace


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gravity field parameters are usually determined from observations of the GRACE satellite mission together with arc-specific parameters in a generalized orbit determination process. When separating the estimation of gravity field parameters from the determination of the satellites’ orbits, correlations between orbit parameters and gravity field coefficients are ignored and the latter parameters are biased towards the a priori force model. We are thus confronted with a kind of hidden regularization. To decipher the underlying mechanisms, the Celestial Mechanics Approach is complemented by tools to modify the impact of the pseudo-stochastic arc-specific parameters on the normal equations level and to efficiently generate ensembles of solutions. By introducing a time variable a priori model and solving for hourly pseudo-stochastic accelerations, a significant reduction of noisy striping in the monthly solutions can be achieved. Setting up more frequent pseudo-stochastic parameters results in a further reduction of the noise, but also in a notable damping of the observed geophysical signals. To quantify the effect of the a priori model on the monthly solutions, the process of fixing the orbit parameters is replaced by an equivalent introduction of special pseudo-observations, i.e., by explicit regularization. The contribution of the thereby introduced a priori information is determined by a contribution analysis. The presented mechanism is valid universally. It may be used to separate any subset of parameters by pseudo-observations of a special design and to quantify the damage imposed on the solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A feasibility study by Pail et al. (Can GOCE help to improve temporal gravity field estimates? In: Ouwehand L (ed) Proceedings of the 4th International GOCE User Workshop, ESA Publication SP-696, 2011b) shows that GOCE (‘Gravity field and steady-state Ocean Circulation Explorer’) satellite gravity gradiometer (SGG) data in combination with GPS derived orbit data (satellite-to-satellite tracking: SST-hl) can be used to stabilize and reduce the striping pattern of a bi-monthly GRACE (‘Gravity Recovery and Climate Experiment’) gravity field estimate. In this study several monthly (and bi-monthly) combinations of GRACE with GOCE SGG and GOCE SST-hl data on the basis of normal equations are investigated. Our aim is to assess the role of the gradients (solely) in the combination and whether already one month of GOCE observations provides sufficient data for having an impact in the combination. The estimation of clean and stable monthly GOCE SGG normal equations at high resolution ( >  d/o 150) is found to be difficult, and the SGG component, solely, does not show significant added value to monthly and bi-monthly GRACE gravity fields. Comparisons of GRACE-only and combined monthly and bi-monthly solutions show that the striping pattern can only be reduced when using both GOCE observation types (SGG, SST-hl), and mainly between d/o 45 and 60.