999 resultados para Astarte borealis, d13C


Relevância:

10.00% 10.00%

Publicador:

Resumo:

At marine seeps, methane is microbially oxidized resulting in the precipitation of carbonates close to the seafloor. Methane oxidation leads to sulfate depletion in sediment pore water, which induces a change in redox conditions. Rare earth element (REE) patterns of authigenic carbonate phases collected from modern seeps of the Gulf of Mexico, the Black Sea, and the Congo Fan were analyzed. Different carbonate minerals including aragonite and calcite with different crystal habits have been selected for analysis. Total REE content (SumREE) of seep carbonates varies widely, from 0.1 ppm to 42.5 ppm, but a common trend is that the SumREE in microcrystalline phases is higher than that of the associated later phases including micospar, sparite and blocky cement, suggesting that SumREE may be a function of diagenesis. The shale-normalized REE patterns of the seep carbonates often show different Ce anomalies even in samples from a specific site, suggesting that the formation conditions of seep carbonates are variable and complex. Overall, our results show that apart from anoxic, oxic conditions are at least temporarily common in seep environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The benthic isotopic record of Miocene Cibicidoides from Site 709 provides a record of conditions in the Indian Ocean at a depth of about 3200 mbsf. As expected, the record qualitatively resembles those of other Deep Sea Drilling Project and Ocean Drilling Program sites. The data are consistent with the scenario for the evolution of thermohaline circulation in the Miocene Indian Ocean proposed by Woodruff and Savin (1989, doi:10.1029/PA004i001p00087). Further testing of that scenario, however, requires isotopic data for Cibicidoides from other Indian Ocean sites. There is a correlation between d13C values of Cibicidoides and planktonic:benthic (P:B)ratios of Site 709 sediments, implying a causal relationship between the corrosiveness of deep waters and concentration of CO2 derived from oxidation of organic matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present modern B/Ca core-top calibrations for the epifaunal benthic foraminifer Nuttallides umbonifera and the infaunal Oridorsalis umbonatus to test whether B/Ca values in these species can be used for the reconstruction of paleo-D[[CO3]2-]. O. umbonatus originated in the Late Cretaceous and remains extant, whereas N. umbonifera originated in the Eocene and is the closest extant relative to Nuttallides truempyi, which ranges from the Late Cretaceous through the Eocene. We measured B/Ca in both species in 35 Holocene sediment samples from the Atlantic, Pacific and Southern Oceans. B/Ca values in epifaunal N. umbonifera (~ 85-175 µmol/mol) are consistently lower than values reported for epifaunal Cibicidoides (Cibicides) wuellerstorfi (130-250 µmol/mol), though the sensitivity of D[[CO3]2-] on B/Ca in N. umbonifera (1.23 ± 0.15) is similar to that in C. wuellerstorfi (1.14 ± 0.048). In addition, we show that B/Ca values of paired N. umbonifera and its extinct ancestor, N. truempyi, from Eocene cores are indistinguishable within error. In contrast, both the B/Ca (35-85 µmol/mol) and sensitivity to D[[CO3]2-] (0.29 ± 0.20) of core-top O. umbonatus are considerably lower (as in other infaunal species), and this offset extends into the Paleocene. Thus the B/Ca of N. umbonifera and its ancestor can be used to reconstruct bottom water D[[CO3]2?], whereas O. umbonatus B/Ca appears to be buffered by porewater [[CO3]2-] and suited for constraining long-term drift in seawater B/Ca.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A continuous 10-m-long section consisting of roughly two thirds Ethmodiscus rex (a diatom) and one third mixed planktonic foraminifera was identified in a core from 3800 m depth at 9°S on the Indian Ocean's 90°E Ridge. Radiocarbon dates place the onset of deposition of this layer at >30,000 years B.P. and its termination at close to 11,000 years B.P. However, precise dating of the foraminifera from the Ethmodiscus layer itself proved to be impossible owing to the presence of secondary calcite presumably precipitated from the pore waters. During the Holocene, high calcium carbonate content ooze free of diatoms was deposited at this locale. As the site currently lies beneath the pathway taken by upper ocean waters entering the Indian Ocean from the Pacific (via the Indonesian Straits), it appears that during glacial time, thermocline waters moving along this same path provided the silica and other nutrients required by these diatoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluid circulation in peridotite-hosted hydrothermal systems influences the incorporation of carbon into the oceanic crust and its long-term storage. At low to moderate temperatures, serpentinization of peridotite produces alkaline fluids that are rich in CH4 and H2. Upon mixing with seawater, these fluids precipitate carbonate, forming an extensive network of calcite veins in the basement rocks, while H2 and CH4 serve as an energy source for microorganisms. Here, we analyzed the carbon geochemistry of two ancient peridotite-hosted hydrothermal systems: 1) ophiolites cropping out in the Northern Apennines, and 2) calcite-veined serpentinites from the Iberian Margin (Ocean Drilling Program (ODP) Legs 149 and 173), and compare them to active peridotite-hosted hydrothermal systems such as the Lost City hydrothermal field (LCHF) on the Atlantis Massif near the Mid-Atlantic Ridge (MAR). Our results show that large amounts of carbonate are formed during serpentinization of mantle rocks exposed on the seafloor (up to 9.6 wt.% C in ophicalcites) and that carbon incorporation decreases with depth. In the Northern Apennine serpentinites, serpentinization temperatures decrease from 240 °C to < 150 °C, while carbonates are formed at temperatures decreasing from ~ 150 °C to < 50 °C. At the Iberian Margin both carbonate formation and serpentinization temperatures are lower than in the Northern Apennines with serpentinization starting at ~ 150 °C, followed by clay alteration at < 100 °C and carbonate formation at < 19-44 °C. Comparison with various active peridotite-hosted hydrothermal systems on the MAR shows that the serpentinites from the Northern Apennines record a thermal evolution similar to that of the basement of the LCHF and that tectonic activity on the Jurassic seafloor, comparable to the present-day processes leading to oceanic core complexes, probably led to formation of fractures and faults, which promoted fluid circulation to greater depth and cooling of the mantle rocks. Thus, our study provides further evidence that the Northern Apennine serpentinites host a paleo-stockwork of a hydrothermal system similar to the basement of the LCHF. Furthermore, we argue that the extent of carbonate uptake is mainly controlled by the presence of fluid pathways. Low serpentinization temperatures promote microbial activity, which leads to enhanced biomass formation and the storage of organic carbon. Organic carbon becomes dominant with increasing depth and is the principal carbon phase at more than 50-100 m depth of the serpentinite basement at the Iberian Margin. We estimate that annually 1.1 to 2.7 × 1012 g C is stored within peridotites exposed to seawater, of which 30-40% is fixed within the uppermost 20-50 m mainly as carbonate. Additionally, we conclude that alteration of oceanic lithosphere is an important factor in the long-term global carbon cycle, having the potential to store carbon for millions of years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Beringian climate and environmental history are poorly characterized at its easternmost edge. Lake sediments from the northern Yukon Territory have recorded sedimentation, vegetation, summer temperature and precipitation changes since ~16 cal ka BP. Herb-dominated tundra persisted until ~14.7 cal ka BP with mean July air temperatures less than or equal to 5 °C colder and annual precipitation 50 to 120 mm lower than today. Temperatures rapidly increased during the Bølling/Allerød interstadial towards modern conditions, favoring establishment of Betula-Salix shrub tundra. Pollen-inferred temperature reconstructions recorded a pronounced Younger Dryas stadial in east Beringia with a temperature drop of ~1.5 °C (~2.5 to 3.0 °C below modern conditions) and low net precipitation (90 to 170 mm) but show little evidence of an early Holocene thermal maximum in the pollen record. Sustained low net precipitation and increased evaporation during early Holocene warming suggest a moisture-limited spread of vegetation and an obscured summer temperature maximum. Northern Yukon Holocene moisture availability increased in response to a retreating Laurentide Ice Sheet, postglacial sea level rise, and decreasing summer insolation that in turn led to establishment of Alnus-Betula shrub tundra from ~5 cal ka BP until present, and conversion of a continental climate into a coastal-maritime climate near the Beaufort Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During IODP Expedition 310 (Tahiti Sea Level), drowned Pleistocene-Holocene barrier-reef terraces were drilled on the slope of the volcanic island. The deglacial reef succession typically consists of a coral framework encrusted by coralline algae and later by microbialites; the latter make up < 80% of the rock volume. Lipid biomarkers were analyzed in order to identify organisms involved in reef-microbialite formation at Tahiti, as the genesis of deglacial microbialites and the conditions favoring their formation are not fully understood. Sterols plus saturated and monounsaturated short-chain fatty acids predominantly derived from both marine primary producers (algae) and bacteria comprise 44 wt% of all lipids on average, whereas long-chain fatty acids and long-chain alcohols derived from higher land plants represent an average of only 24 wt%. Bacterially derived mono-O-alkyl glycerol ethers (MAGEs) and branched fatty acids (10-Me-C16:0; iso- and anteiso-C15:0 and -C17:0) are exceptionally abundant in the microbial carbonates (average, 19 wt%) and represent biomarkers of intermediate-to-high specificity for sulfate-reducing bacteria. Both are relatively enriched in 13C compared to eukaryotic lipids. No lipid biomarkers indicative of cyanobacteria were preserved in the microbialites. The abundances of Al, Si, Fe, Mn, Ba, pyroxene, plagioclase, and magnetite reflect strong terrigenous influx with Tahitian basalt as the major source. Chemical weathering of the basalt most likely elevated nutrient levels in the reefs and this fertilization led to an increase in primary production and organic matter formation, boosting heterotrophic sulfate reduction. Based on the observed biomarker patterns, sulfate-reducing bacteria were apparently involved in the formation of microbialites in the coral reefs off Tahiti during the last deglaciation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment samples taken at close intervals across four major unconformities (middle Miocene/upper Miocene, lower Oligocene/upper Oligocene, lower Eocene/upper Eocene, lower Paleocene/upper Paleocene) at DSDP-IPOD Site 548, Goban Spur, reveal that coeval biostratigraphic gaps, sediment discontinuities, and seismic unconformities coincide with postulated low stands of sea level. Foraminiferal, lithic, and isotopic analyses demonstrate that environments began to shift prior to periods of marine erosion, and that sedimentation resumed in the form of turbidites derived from nearby upper-slope sources. The unconformities appear to have developed where a water-mass boundary intersected the continental slope, rhythmically crossing the drill site in concert with sea-level rise and fall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microthermometric and isotopic analyses of fluid inclusions in primitive olivine gabbros, oxide gabbros, and evolved granitic material recovered from Ocean Drilling Program Hole 735B at the Southwest Indian Ridge provide new insights into the evolution of C-O-H-NaCl fluids in the plutonic foundation of the oceanic crust. The variably altered and deformed plutonic rocks span a crustal section of over 1500 m and record a remarkably complex magma-hydrothermal history. Magmatic fluids within this suite followed two chemically distinct paths during cooling through the subsolidus regime: the first path included formation of CO2+CH4+H2O+C fluids with up to 43 mole% CH4; the second path produced hypersaline brines that contain up to 50% NaCl equivalent salinities. Subsequent to devolatilization, respeciation of magmatic CO2, attendant graphite precipitation, and cooling from 800°C to 500°C promoted formation of CH4-enriched fluids. These fluids are characterized by average d13C(CH4) values of -27.1+/-4.3 per mil (N=45) with associated d13C(CO2) compositions ranging from -24.9 per mil to -1.9 per mil (N=39), and average dD values of exsolved vapor of -41+/-12 per mil (N=23). In pods, veins, and lenses of highly fractionated residual material, hypersaline brines formed during condensation and by direct exsolution in the absence of a conjugate vapor phase. Entrapped CO2+CH4+H2O-rich fluids within many oxide-bearing rocks and felsic zones are significantly depleted in 13C (with d13C(CO2) values down to about -25 per mil) and contain CO2 concentrations higher than those predicted by equilibrium devolatilization models. We hypothesize that lower effective pressures in high-temperature shear zones promoted infiltration of highly fractionated melts and compositionally evolved volatiles into focused zones of deformation, significantly weakening the rock strength. In felsic-rich zones, volatile build-up may have driven hydraulic fracturing of gabbroic wall rocks resulting in the formation of magmatic breccias. Comparison of isotopic compositions of fluids in plutonic rocks from 735B, the MARK area of the Mid-Atlantic Ridge, and the Mid-Cayman Rise indicate (1) that the carbon isotope composition of the lower oceanic crust may be far more heterogeneous than previously believed and (2) that carbon-bearing species in the oceanic crust and their distribution at depth are highly variable.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report high-resolution planktonic foraminifer census counts and stable oxygen and carbon isotope measurements of the planktonic foraminifera G. bulloides and N. pachyderma s. from sediment core MD07-3076Q for the last deglaciation, the last glacial maximum and Marine Isotope Stage 3. These data provide insights into the marine cycling of carbon and frontal dynamics in the sub-Antarctic Atlantic during the last 68 ka.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Six deep sea cores from the eastern equatorial Pacific (EEP) were analyzed for planktonic foraminifera and stable isotopes in order to reconstruct sea surface temperatures (SST) for the last 40 ka. South of the Equatorial Front the abundance of Globorotalia inflata increased, and SST decreased by >5°C (core ODP846B), creating a stronger SST meridional gradient and advection of the Peru Current than present for the ~16-35 ka interval. A sharper SST meridional gradient forced stronger Choco jet events and a moisture increase in western Colombia, which supplied, through the San Juan River and the south-flowing equatorial and the Peru-Chile countercurrents, abundant hemipelagic quartz over the northern Peru basin (core TR163-31B). The Choco jet, and its associated mesoscale convective cells, provoked an increase in snow precipitation over the Central Cordillera of Colombia and the advance of the Murillo glacier. In synchrony with the intensified Choco jet events, the "dry island" effect over the Eastern Cordillera of Colombia intensified, and the level of Fuquene Lake dropped.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the Western Nankai Trough subduction zone at ODP Site 808, chemical concentration and isotopic ratio depth profiles of D, O, Sr, and He do not support fluid flow along the décollement nor at the frontal thrust. They do, however, support continuous or periodic lateral fluid flow: (1) at the base of the Shikoku Basin volcanic-rich sediment member, situated ~140 m above the décollement, and particularly (2) below the décollement. The latter must have been rather vigorous, as it was capable of transporting clay minerals over great distances. The fluid at ~140 m above the décollement is characterized by lower than seawater concentrations of Cl- (>=18% seawater dilution). It is 18O-rich and D-poor and has a non-radiogenic, oceanic, or volcanic arc Sr isotopic signature. It originates from "volcanic" clay diagenesis. The fluid below the décollement has also less Cl- than seawater (>20% dilution), is more enriched in 18O and depleted in D than fluid, but its Sr isotopic signature is radiogenic, continentalterrigenous. The source of this fluid is located arcward, is deep-seated, where illitization of the subducted clay minerals, a mixture of terrigenous and volcanic clays, occurs. The 3He/4He ratio below the décollement points to an ~25% mantle contribution. The nature of the physical and chemical discontinuities across the décollement suggests it is overpressured and is forming a leaky "dynamic seal" for fluid flow. In contrast with the situation at Barbados and Peru, where the major tectonic features are mineralized, here, although the complex is extremely fractured and faulted, mineralized macroscopic veins, fractures, and faults are absent. Instead, mineralized microstructures are widespread, indicating a diffuse mode of dewatering.