960 resultados para Artificial intelligence.
Resumo:
This paper investigates the application of complex wavelet transforms to the field of digital data hiding. Complex wavelets offer improved directional selectivity and shift invariance over their discretely sampled counterparts allowing for better adaptation of watermark distortions to the host media. Two methods of deriving visual models for the watermarking system are adapted to the complex wavelet transforms and their performances are compared. To produce improved capacity a spread transform embedding algorithm is devised, this combines the robustness of spread spectrum methods with the high capacity of quantization based methods. Using established information theoretic methods, limits of watermark capacity are derived that demonstrate the superiority of complex wavelets over discretely sampled wavelets. Finally results for the algorithm against commonly used attacks demonstrate its robustness and the improved performance offered by complex wavelet transforms.
Resumo:
A variety of short time delays inserted between pairs of subjects were found to affect their ability to synchronize a musical task. The subjects performed a clapping rhythm together from separate sound-isolated rooms via headphones and without visual contact. One-way time delays between pairs were manipulated electronically in the range of 3 to 78 ms. We are interested in quantifying the envelope of time delay within which two individuals produce synchronous per- formances. The results indicate that there are distinct regimes of mutually coupled behavior, and that `natural time delay'o¨delay within the narrow range associated with travel times across spatial arrangements of groups and ensembleso¨supports the most stable performance. Conditions outside of this envelope, with time delays both below and above it, create characteristic interaction dynamics in the mutually coupled actions of the duo. Trials at extremely short delays (corresponding to unnaturally close proximity) had a tendency to accelerate from anticipation. Synchronization lagged at longer delays (larger than usual physical distances) and produced an increasingly severe deceleration and then deterioration of performed rhythms. The study has implications for music collaboration over the Internet and suggests that stable rhythmic performance can be achieved by `wired ensembles' across distances of thousands of kilometers.
Resumo:
This paper presents a feature selection method for data classification, which combines a model-based variable selection technique and a fast two-stage subset selection algorithm. The relationship between a specified (and complete) set of candidate features and the class label is modelled using a non-linear full regression model which is linear-in-the-parameters. The performance of a sub-model measured by the sum of the squared-errors (SSE) is used to score the informativeness of the subset of features involved in the sub-model. The two-stage subset selection algorithm approaches a solution sub-model with the SSE being locally minimized. The features involved in the solution sub-model are selected as inputs to support vector machines (SVMs) for classification. The memory requirement of this algorithm is independent of the number of training patterns. This property makes this method suitable for applications executed in mobile devices where physical RAM memory is very limited. An application was developed for activity recognition, which implements the proposed feature selection algorithm and an SVM training procedure. Experiments are carried out with the application running on a PDA for human activity recognition using accelerometer data. A comparison with an information gain based feature selection method demonstrates the effectiveness and efficiency of the proposed algorithm.
Resumo:
This paper describes the development of a novel metaheuristic that combines an electromagnetic-like mechanism (EM) and the great deluge algorithm (GD) for the University course timetabling problem. This well-known timetabling problem assigns lectures to specific numbers of timeslots and rooms maximizing the overall quality of the timetable while taking various constraints into account. EM is a population-based stochastic global optimization algorithm that is based on the theory of physics, simulating attraction and repulsion of sample points in moving toward optimality. GD is a local search procedure that allows worse solutions to be accepted based on some given upper boundary or ‘level’. In this paper, the dynamic force calculated from the attraction-repulsion mechanism is used as a decreasing rate to update the ‘level’ within the search process. The proposed method has been applied to a range of benchmark university course timetabling test problems from the literature. Moreover, the viability of the method has been tested by comparing its results with other reported results from the literature, demonstrating that the method is able to produce improved solutions to those currently published. We believe this is due to the combination of both approaches and the ability of the resultant algorithm to converge all solutions at every search process.
Resumo:
This paper describes the application of an improved nonlinear principal component analysis (PCA) to the detection of faults in polymer extrusion processes. Since the processes are complex in nature and nonlinear relationships exist between the recorded variables, an improved nonlinear PCA, which incorporates the radial basis function (RBF) networks and principal curves, is proposed. This algorithm comprises two stages. The first stage involves the use of the serial principal curve to obtain the nonlinear scores and approximated data. The second stage is to construct two RBF networks using a fast recursive algorithm to solve the topology problem in traditional nonlinear PCA. The benefits of this improvement are demonstrated in the practical application to a polymer extrusion process.
Resumo:
In this paper, we present a novel approach to person verification by fusing face and lip features. Specifically, the face is modeled by the discriminative common vector and the discrete wavelet transform. Our lip features are simple geometric features based on a lip contour, which can be interpreted as multiple spatial widths and heights from a center of mass. In order to combine these features, we consider two simple fusion strategies: data fusion before training and score fusion after training, working with two different face databases. Fusing them together boosts the performance to achieve an equal error rate as low as 0.4% and 0.28%, respectively, confirming that our approach of fusing lips and face is effective and promising.
Resumo:
It is convenient and effective to solve nonlinear problems with a model that has a linear-in-the-parameters (LITP) structure. However, the nonlinear parameters (e.g. the width of Gaussian function) of each model term needs to be pre-determined either from expert experience or through exhaustive search. An alternative approach is to optimize them by a gradient-based technique (e.g. Newton’s method). Unfortunately, all of these methods still need a lot of computations. Recently, the extreme learning machine (ELM) has shown its advantages in terms of fast learning from data, but the sparsity of the constructed model cannot be guaranteed. This paper proposes a novel algorithm for automatic construction of a nonlinear system model based on the extreme learning machine. This is achieved by effectively integrating the ELM and leave-one-out (LOO) cross validation with our two-stage stepwise construction procedure [1]. The main objective is to improve the compactness and generalization capability of the model constructed by the ELM method. Numerical analysis shows that the proposed algorithm only involves about half of the computation of orthogonal least squares (OLS) based method. Simulation examples are included to confirm the efficacy and superiority of the proposed technique.
Resumo:
Measuring the degree of inconsistency of a belief base is an important issue in many real world applications. It has been increasingly recognized that deriving syntax sensitive inconsistency measures for a belief base from its minimal inconsistent subsets is a natural way forward. Most of the current proposals along this line do not take the impact of the size of each minimal inconsistent subset into account. However, as illustrated by the well-known Lottery Paradox, as the size of a minimal inconsistent subset increases, the degree of its inconsistency decreases. Another lack in current studies in this area is about the role of free formulas of a belief base in measuring the degree of inconsistency. This has not yet been characterized well. Adding free formulas to a belief base can enlarge the set of consistent subsets of that base. However, consistent subsets of a belief base also have an impact on the syntax sensitive normalized measures of the degree of inconsistency, the reason for this is that each consistent subset can be considered as a distinctive plausible perspective reflected by that belief base,whilst eachminimal inconsistent subset projects a distinctive viewof the inconsistency. To address these two issues,we propose a normalized framework formeasuring the degree of inconsistency of a belief base which unifies the impact of both consistent subsets and minimal inconsistent subsets. We also show that this normalized framework satisfies all the properties deemed necessary by common consent to characterize an intuitively satisfactory measure of the degree of inconsistency for belief bases. Finally, we use a simple but explanatory example in equirements engineering to illustrate the application of the normalized framework.
Resumo:
The capacity to attribute beliefs to others in order to understand action is one of the mainstays of human cognition. Yet it is debatable whether children attribute beliefs in the same way to all agents. In this paper, we present the results of a false-belief task concerning humans and God run with a sample of Maya children aged 4–7, and place them in the context of several psychological theories of cognitive development. Children were found to attribute beliefs in different ways to humans and God. The evidence also speaks to the debate concerning the universality and uniformity of the development of folk-psychological reasoning.