942 resultados para Arm coordination
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The objective of this study was to compare onset of deep and superficial cervical flexor muscle activity during rapid, unilateral arm movements between ten patients with chronic neck pain and 12 control subjects. Deep cervical flexor (DCF) electromyographic activity (EMG) was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the sternocleidomastoid (SCM) and anterior scalene (AS) muscles. While standing, subjects flexed and extended the right arm in response to a visual stimulus. For the control group, activation of DCF, SCM and AS muscles occurred less than 50 ms after the onset of deltoid activity, which is consistent with feedforward control of the neck during arm flexion and extension. When subjects with a history of neck pain flexed the arm, the onsets of DCF and contralateral SCM and AS muscles were significantly delayed (p<0.05). It is concluded that the delay in neck muscle activity associated with movement of the arm in patients with neck pain indicates a significant deficit in the automatic feedforward control of the cervical spine. As the deep cervical muscles are fundamentally important for support of the cervical lordosis and the cervical joints, change in the feedforward response may leave the cervical spine vulnerable to reactive forces from arm movement.
Resumo:
There has been an increase in the use of cognitive frameworks in occupational therapy with children with developmental coordination disorder (DCD). Investigations into the utility of one such cognitive approach, namely Cognitive Orientation to (daily) Occupational Performance (CO-OP), with children with DCD have shown the intervention to be effective with children over 7 years. However, there has been limited research into its utility with younger children. This paper presents two case studies to demonstrate the use of CO-OP with children aged 5-7 years. Two boys with DCD engaged in 10 sessions of CO-OP. These younger children were found to be able to use the global framework (Goal, Plan, Do, Check) to improve their task performance, to develop plans using domain-specific strategies and to engage in checking strategies. Issues relating to attention, motivation and goal setting are discussed in the context of the two case studies.
Resumo:
It has often been supposed that patterns of rhythmic bimanual coordination in which homologous muscles are engaged simultaneously, are performed in a more stable manner than those in which the same muscles are activated in an alternating fashion. In order to assess the efficacy of this constraint, the present study investigated the effect of forearm posture (prone or supine) on bimanual abduction-adduction movements of the wrist in isodirectional and non-isodirectional modes of coordination. Irrespective of forearm posture, non-isodirectional coordination was observed to be more stable than isodirectional coordination. In the latter condition, there was a more severe deterioration of coordination accuracy/stability as a function of cycling frequency than in the former condition. With elevations in cycling frequency, the performers recruited extra mechanical degrees of freedom, principally via flexion-extension of the wrist, which gave rise to increasing motion in the vertical plane. The increases in movement amplitude in the vertical plane were accompanied by decreasing amplitude in the horizontal plane. In agreement with previous studies, the present findings confirm that the relative timing of homologous muscle activation acts as a principal constraint upon the stability of interlimb coordination. Furthermore, it is argued that the use of manipulations of limb posture to investigate the role of other classes of constraint (e.g. perceptual) should be approached with caution because such manipulations affect the mapping between muscle activation patterns, movement dynamics and kinematics.
Resumo:
To examine the role of the effector dynamics of the wrist in the production of rhythmic motor activity, we estimated the phase shifts between the EMG and the task-related output for a rhythmic isometric torque production task and an oscillatory movement, and found a substantial difference (45-52degrees) between the two. For both tasks, the relation between EMG and task-related output (torque or displacement) was adequately reproduced with a physiologically motivated musculoskeletal model. The model simulations demonstrated the importance of the contribution of passive structures to the overall dynamics and provided an account for the observed phase shifts in the dynamic task. Additional simulations of the musculoskeletal model with added load suggested that particular changes in the phase relation between EMG and movement may follow largely from the intrinsic muscle dynamics, rather than being the result of adaptations in the neural control of joint stiffness. The implications of these results are discussed in relation to (models of) interlimb coordination in rhythmic tasks. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This article examines the current transfer pricing regime to consider whether it is a sound model to be applied to modern multinational entities. The arm's length price methodology is examined to enable a discussion of the arguments in favour of such a regime. The article then refutes these arguments concluding that, contrary to the very reason multinational entities exist, applying arm's length rules involves a legal fiction of imagining transactions between unrelated parties. Multinational entities exist to operate in a way that independent entities would not, which the arm's length rules fail to take into account. As such, there is clearly an air of artificiality in applying the arm's length standard. To demonstrate this artificiality with respect to modern multinational entities, multinational banks are used as an example. The article concluded that the separate entity paradigm adopted by the traditional transfer pricing regime is incongruous with the economic theory of modern multinational enterprises.
Resumo:
Enforcement of chirality upon a macrocyclic tetramine ligand structure by the introduction of an asymmetric pendent arm which does not significantly modify the macrocycle conformation has no significant effect upon the geometry of the coordination sphere of a bound metal. Where substitution engendering chirality does cause a change in the ligand conformation, in particular for a ligand of restricted stereochemistry, these effects can be much greater. Thus, conversion of 3,7-diazacycloheptane to a macrocycle via attachment of chiral sidearms and ring closure through a template reaction leads to cyclam derivatives with unusual coordination properties. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Reaction between ethane-1,2-diamine and 3,3'-dichloropivalic acid results in different, isomeric tetra-amine derivatives, one a tetraamino carboxylic acid and the other a carboxamidotriamino alcohol, depending upon reaction conditions, Intended conversion of the Cu(II) complex of the former to a cyclam-like macrocycle through reaction with nitroethane and formaldehyde results in isolation of derivatives of both the former and the latter. This can be rationalized by assuming the intermediacy of an azetidinone, a species similar to that seen in simpler reactions of dichloropivalates. A single reaction thereby provides pendent-arm macrocycles where one has an electrophilic and the other a nucleophilic substituent. Parallel chemistry is not seen in the reaction between propane-1,3-diamine and 3,3'-dichloropivalate.
Resumo:
Changes in the position of the head and neck have been shown to introduce a systematic deviation in the end-point error of an upper limb pointing task. Although previous authors have attributed this to alteration of perceived target location, no studies have explored the effect of changes in head and neck position on the perception of limb position. This study investigated whether changes in head and neck position affect a specific component of movement performance, that is, the accuracy of joint position sense (JPS) at the elbow. Elbow JPS was tested with the neck in four positions: neutral, flexion, rotation and combined flexion/rotation. A target angle was presented passively with the neck in neutral, after a rest period; this angle was reproduced actively with the head and neck in one of the test positions. The potential effects of distraction from head movement were controlled for by performing a movement control in which the head and neck were in neutral for the presentation and reproduction of the target angle, but moved into flexion during the rest period. The absolute and variable joint position errors (JPE) were greater when the target angle was reproduced with the neck in the flexion, rotation, and combined flexion/rotation than when the head and neck were in neutral. This study suggests that the reduced accuracy previously seen in pointing tasks with changes in head position may be partly because of errors in the interpretation of arm position.
Resumo:
The search for orally effective drugs for the treatment of iron overload disorders is an important goal in improving the health of patients suffering diseases such as beta-thalassemia major. Herein, we report the syntheses and characterization of some new members of a series of N-aroyl-N'-picolinoyl hydrazine chelators (the H2IPH analogs). Both 1:1 and 1:2 Fe-III:L complexes were isolated and the crystal structures of Fe(HPPH)Cl-2, Fe(4BBPH)Cl-2, Fe(HAPH)(APH) and Fe(H3BBPH)(3BBPH) were determined (H2PPH=N,N'-bis-picolinoyl hydrazine; H(2)APH=N-4-aminobenzoyl-N'-picolinoyl hydrazine, H(2)3BBPH=N-3-bromobenzoyl-N'-picolinoylhydrazine and H(2)4BBPH=N-(4-bromobenzoyl)-N'-(picolinoyl)hydrazine). In each case, a tridentate N,N,O coordination mode of each chelator with Fe was observed. The Fe-III complexes of these ligands have been synthesized and their structural, spectroscopic and electrochemical characterization are reported. Five of these new chelators, namely H2BPH (N-(benzoyl)-N'-(picolinoyl)hydrazine), H2TPH (N-(2-thienyl)-N'-(picolinoyl)-hydrazine), H2PPH, H(2)3BBPH and H(2)4BBPH, showed high efficacy at mobilizing Fe-59 from cells and inhibiting Fe-59 uptake from the serum Fe transport protein, transferrin (Tf). Indeed, their activity was much greater than that found for the chelator in current clinical use, desferrioxamine (DFO), and similar to that observed for the orally active chelator, pyridoxal isonicotinoyl hydrazone (H2PIH). The ability of the chelators to inhibit Fe-59 uptake could not be accounted for by direct chelation of Fe-59-Tf. The most effective chelators also showed low antiproliferative activity which was similar to or less than that observed with DFO, which is important in terms of their potential use as agents to treat Fe-overload disease.
Resumo:
In this study we attempted to identify the principles that govern the changes in neural control that occur during repeated performance of a multiarticular coordination task. Eight participants produced isometric flexion/extension and pronation/supination torques at the radiohumeral joint, either in isolation (e.g., flexion) or in combination (e.g., flexion - supination), to acquire targets presented by a visual display. A cursor superimposed on the display provided feedback of the applied torques. During pre- and postpractice tests, the participants acquired targets in eight directions located either 3.6 cm (20% maximal voluntary contraction [MVC]) or 7.2 cm (40% MVC) from a neutral cursor position. On each of five consecutive days of practice the participants acquired targets located 5.4 cm (30% MVC) from the neutral position. EMG was recorded from eight muscles contributing to torque production about the radiohumeral joint during the pre- and posttests. Target-acquisition time decreased significantly with practice in most target directions and at both target torque levels. These performance improvements were primarily associated with increases in the peak rate of torque development after practice. At a muscular level, these changes were brought about by increases in the rates of recruitment of all agonist muscles. The spatiotemporal organization of muscle synergies was not significantly altered after practice. The observed adaptations appear to lead to performances that are generalizable to actions that require both greater and smaller joint torques than that practiced, and may be successfully recalled after a substantial period without practice. These results suggest that tasks in which performance is improved by increasing the rate of muscle activation, and thus the rate of joint torque development, may benefit in terms of the extent to which acquired levels of performance are maintained over time.
Resumo:
In this experiment, we examined the extent to which the spatiotemporal reorganization of muscle synergies mediates skill acquisition on a two degree-of-freedom (df) target-acquisition task. Eight participants completed five practice sessions on consecutive days. During each session they practiced movements to eight target positions presented by a visual display. The movements required combinations of flexion/extension and pronation/supination of the elbow joint complex. During practice sessions, eight targets displaced 5.4 cm from the start position ( representing joint excursions of 54) were presented 16 times. During pre- and posttests, participants acquired the targets at two distances (3.6 cm [36 degrees] and 7.2 cm [72 degrees]). EMG data were recorded from eight muscles contributing to the movements during the pre- and posttests. Most targets were acquired more rapidly after the practice period. Performance improvements were, in most target directions, accompanied by increases in the smoothness of the movement trajectories. When target acquisition required movement in both dfs, there were also practice-related decreases in the extent to which the trajectories deviated from a direct path to the target. The contribution of monofunctional muscles ( those producing torque in a single df) increased with practice during movements in which they acted as agonists. The activity in bifunctional muscles ( those contributing torque in both dfs) remained at pretest levels in most movements. The results suggest that performance gains were mediated primarily by changes in the spatial organization of muscles synergies. These changes were expressed most prominently in terms of the magnitude of activation of the monofunctional muscles.