961 resultados para Area-restricted search


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary: The offshore shelf and canyon habitats of the OCNMS (Fig. 1) are areas of high primary productivity and biodiversity that support extensive groundfish fisheries. Recent acoustic surveys conducted in these waters have indicated the presence of hard-bottom substrates believed to harbor unique deep-sea coral and sponge assemblages. Such fauna are often associated with shallow tropical waters, however an increasing number of studies around the world have recorded them in deeper, cold-water habitats in both northern and southern latitudes. These habitats are of tremendous value as sites of recruitment for commercially important fishes. Yet, ironically, studies have shown how the gear used in offshore demersal fishing, as well as other commercial operations on the seafloor, can cause severe physical disturbances to resident benthic fauna. Due to their exposed structure, slow growth and recruitment rates, and long life spans, deep-sea corals and sponges may be especially vulnerable to such disturbances, requiring very long periods to recover. Potential effects of fishing and other commercial operations in such critical habitats, and the need to define appropriate strategies for the protection of these resources, have been identified as a high-priority management issue for the sanctuary. To begin addressing this issue, an initial pilot survey was conducted June 1-12, 2004 at six sites in offshore waters of the OCNMS (Fig. 2, average depths of 147-265 m) to explore for the presence of deep-sea coral/sponge assemblages and to look for evidence of potential anthropogenic impacts in these critical habitats. The survey was conducted on the NOAA Ship McARTHUR-II using the Navy’s Phantom DHD2+2 remotely operated vehicle (ROV), which was equipped with a video camera, lasers, and a manipulator arm for the collection of voucher specimens. At each site, a 0.1-m2 grab sampler also was used to collect samples of sediments for the analysis of macroinfauna (> 1.0 mm), total organic carbon (TOC), grain size, and chemical contaminants. Vertical profiles of salinity, dissolved oxygen (DO), temperature, and pressure were recorded at each site with a small SeaCat conductivity-temperature-depth (CTD) profiler. Niskin bottles attached to the CTD also obtained near-bottom water samples in support of a companion study of microbial indicators of coral health and general ecological condition across these sites. All samples except the sediment-contaminant samples are being analyzed with present project funds. Original cruise plans included a total of 12 candidate stations to investigate (Fig. 3). However, inclement weather and equipment failures restricted the sampling to half of these sites. In spite of the limited sampling, the work completed was sufficient to address key project objectives and included several significant scientific observations. Foremost, the cruise was successful in demonstrating the presence of target deepwater coral species in these waters. Patches of the rare stony coral Lophelia pertusa, more characteristic of deepwater coral/sponge assemblages in the North Atlantic, were observed for the first time in OCNMS at a site in 271 meters of water. A large proportion of these corals consisted of dead and broken skeletal remains, and a broken gorgonian (soft coral) also was observed nearby. The source of these disturbances is not known. However, observations from several sites included evidence of bottom trawl marks in the sediment and derelict fishing gear (long lines). Preliminary results also support the view that these areas are important reservoirs of marine biodiversity and of value as habitat for demersal fishes. For example, onboard examination of 18 bottom-sediment grabs revealed benthic infaunal species representative of 14 different invertebrate phyla. Twenty-eight species of fishes from 11 families, including 11 (possibly 12) species of ommercially important rockfishes, also were identified from ROV video footage. These initial discoveries have sparked considerable interests in follow-up studies to learn more about the spatial extent of these assemblages and magnitude of potential impacts from commercial-fishing and other anthropogenic activities in the area. It is essential to expand our knowledge of these deep-sea communities and their vulnerability to potential environmental risks in order to determine the most appropriate management strategies. The survey was conducted under a partnership between NOAA’s National Centers for Coastal Ocean Science (NCCOS) and National Marine Sanctuary Program (NMSP) and included scientists from NCCOS, OCNMS, and several other west-coast State, academic, private, and tribal research institutions (see Section 4 for a complete listing of participating scientists). (PDF contains 20 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Warrington Collegiate wanted to locate an area of the Learning Resource Centre (LRC) and equip it with a smart board and ten laptops primarily for staff development. Since the pop-up seminar area has been created it has been used for Vado, Moodle, Quizdom and e-book training plus much more. From an empty corner in the LRC the addition of this technology has created a welcoming comfortable learning space. It has encouraged staff across all the curriculum areas to come into the LRC and extended their role in a place for high quality staff development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: MicroRNAs (miRNAs) are being increasingly studied in relation to energy metabolism and body composition homeostasis. Indeed, the quantitative analysis of miRNAs expression in different adiposity conditions may contribute to understand the intimate mechanisms participating in body weight control and to find new biomarkers with diagnostic or prognostic value in obesity management. OBJECTIVE: The aim of this study was the search for miRNAs in blood cells whose expression could be used as prognostic biomarkers of weight loss. METHODS: Ten Caucasian obese women were selected among the participants in a weight-loss trial that consisted in following an energy-restricted treatment. Weight loss was considered unsuccessful when <5% of initial body weight (non-responders) and successful when >5% (responders). At baseline, total miRNA isolated from peripheral blood mononuclear cells (PBMC) was sequenced with SOLiD v4. The miRNA sequencing data were validated by RT-PCR. RESULTS: Differential baseline expression of several miRNAs was found between responders and non-responders. Two miRNAs were up-regulated in the non-responder group (mir-935 and mir-4772) and three others were down-regulated (mir-223, mir-224 and mir-376b). Both mir-935 and mir-4772 showed relevant associations with the magnitude of weight loss, although the expression of other transcripts (mir-874, mir-199b, mir-766, mir-589 and mir-148b) also correlated with weight loss. CONCLUSIONS: This research addresses the use of high-throughput sequencing technologies in the search for miRNA expression biomarkers in obesity, by determining the miRNA transcriptome of PBMC. Basal expression of different miRNAs, particularly mir-935 and mir-4772, could be prognostic biomarkers and may forecast the response to a hypocaloric diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Industrial effluents in the lower Patapsco area, which constitutes the navigable portion of the river and includes Baltimore Harbor, are many and include waste acid, distillery waters, tannery wastes and copper as (ferrous sulphate) from pigment and steel industries. (PDF contains 22 pages (2 on 1)

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three areas in Rookery Bay, near Marco Island and Fakahatchee Bay were sampled from July 1971 through July 1972, and 1,006,640 individual animals were collected, of which the majority (55%) came from the Marco area. The large disparity between the catches at Marco and the remaining study areas was due mainly to the appearance of high numbers of species of polychaetes and echinoderms that were of very minor importance or absent from the catches in Rookery Bay and Fakahatchee Bay. When only the major classes of animals in the catch are considered (i.e., crustaceans, fish and mollusks) the total counts for Fakahatchee (298,830) and Marco (275,075) are quite comparable but both exceed Rookery Bay (119,388) by a considerable margin. The effects of the red tide outbreak in the summer of 1971 were apparently restricted to the Rookery Bay Sanctuary and may account for some of the observed differences. For the purposes of making controlled comparisons between the study areas, three common habitats were selected in each area so that a mud bottom habitat, a sand-shell bottom habitat and a vegetated bottom habitat were located in each of the study areas. Total catches by habitat types for crustaceans, fish and mollusks and certain of the more abundant species show clearly the overwhelming importance of the vegetated bottom as a habitat for animals. By habitat the vegetated areas had the most "indicator species" with five, the mud habitat was next with three and the sand-shell habitat third with two. Thus the vegetated habitat would be the best choice if a single habitat were to be used to detect environmental changes between study areas. (PDF contains 137 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toxicity of sediments in Biscayne Bay and many adjoining tributaries was determined as part of a bioeffects assessments program managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. The survey was designed to characterize sediment quality throughout the greater Biscayne Bay area. Surficial sediment samples were collected during 1995 and 1996 from 226 randomly-chosen locations throughout nine major regions. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts; and reduced reproductive success in marine copepods exposed to solid-phase sediments. Contamination and toxicity were most severe in several peripheral canals and tributaries, including the lower Miami River, adjoining the main axis of the bay. In the open basins of the bay, chemical concentrations and toxicity generally were higher in areas north of the Rickenbacker Causeway than south of it. Sediments from the main basins of the bay generally were less toxic than those from the adjoining tributaries and canals. The different toxicity tests, however, indicated differences in severity, incidence, spatial patterns, and spatial extent in toxicity. The most sensitive test among those performed on all samples, a bioassay of normal morphological development of sea urchin embryos, indicated toxicity was pervasive throughout the entire study area. The least sensitive test, an acute bioassay performed with a benthic amphipod, indicated toxicity was restricted to a very small percentage of the area. Both the degree and spatial extent of chemical contamination and toxicity in this study area were similar to or less severe than those observed in many other areas in the U.S. The spatial extent of toxicity in all four tests performed throughout the bay were comparable to the “national averages” calculated by NOAA from previous surveys conducted in a similar manner. Several trace metals occurred in concentrations in excess of those expected in reference sediments. Mixtures of substances, including pesticides, petroleum constituents, trace metals, and ammonia, were associated statistically with the measures of toxicity. Substances most elevated in concentration relative to numerical guidelines and associated with toxicity included polychlorinated biphenyls, DDT pesticides, polynuclear aromatic hydrocarbons, hexachloro cyclohexanes, lead, and mercury. These (and other) substances occurred in concentrations greater than effects-based guidelines in the samples that were most toxic in one or more of the tests. (PDF contains 180 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Executive Summary: Tropical marine ecosystems in the Caribbean region are inextricably linked through the movement of pollutants, nutrients, diseases, and other stressors, which threaten to further degrade coral reef communities. The magnitude of change that is occurring within the region is considerable, and solutions will require investigating pros and cons of networks of marine protected areas (MPAs), cooperation of neighboring countries, improved understanding of how external stressors degrade local marine resources, and ameliorating those stressors. Connectivity can be broadly defined as the exchange of materials (e.g., nutrients and pollutants), organisms, and genes and can be divided into: 1) genetic or evolutionary connectivity that concerns the exchange of organisms and genes, 2) demographic connectivity, which is the exchange of individuals among local groups, and 3) oceanographic connectivity, which includes flow of materials and circulation patterns and variability that underpin much of all these exchanges. Presently, we understand little about connectivity at specific locations beyond model outputs, and yet we must manage MPAs with connectivity in mind. A key to successful MPA management is how to most effectively work with scientists to acquire the information managers need. Oceanography connectivity is poorly understood, and even less is known about the shape of the dispersal curve for most species. Dispersal kernels differ for various systems, species, and life histories and are likely highly variable in space and time. Furthermore, the implications of different dispersal kernels on population dynamics and management of species is unknown. However, small dispersal kernels are the norm - not the exception. Linking patterns of dispersal to management options is difficult given the present state of knowledge. The behavioral component of larval dispersal has a major impact on where larvae settle. Individual larval behavior and life history details are required to produce meaningful simulations of population connectivity. Biological inputs are critical determinants of dispersal outcomes beyond what can be gleaned from models of passive dispersal. There is considerable temporal and spatial variation to connectivity patterns. New models are increasingly being developed, but these must be validated to understand upstream-downstream neighborhoods, dispersal corridors, stepping stones, and source/sink dynamics. At present, models are mainly useful for providing generalities and generating hypotheses. Low-technology approaches such as drifter vials and oceanographic drogues are useful, affordable options for understanding local connectivity. The “silver bullet” approach to MPA design may not be possible for several reasons. Genetic connectivity studies reveal divergent population genetic structures despite similar larval life histories. Historical stochasticity in reproduction and/or recruitment likely has important, longlasting consequences on present day genetic structure. (PDF has 200 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The largely sedentary behavior of many fishes on coral reefs is well established. Information on the movement behavior of individual fish, over fine temporal and spatial scales, however, continues to be limited. It is precisely this type of information that is critical for evaluating the success of marine reserves designed for the conservation and/or management of vagile fishes. In this pilot study we surgically-tagged eight hogfish (Lachnolaimus maximus Walbaum 1792) with coded-acoustic transmitters inside the Conch Reef Research Only Area (a no-take marine reserve) in the northern Florida Keys National Marine Sanctuary. Our primary objective was to characterize the movement of L. maximus across Conch Reef in the vicinity of the reserve. All fish were captured, surgically-tagged and released in situ during a saturation mission to the Aquarius Undersea Laboratory, which is located in the center of the reserve. Movement of tagged L. maximus was recorded for up to 95 days by three acoustic receivers deployed on the seafloor. Results showed clear diel patterns in L. maximus activity and regular movement among the receivers was recorded for seven of the eight tagged fish. Fidelity of tagged fish to the area of release was high when calculated at the scale of days, while within-day fidelity was comparatively low when calculated at the scale of hours. While the number of fish departures from the array also varied, the majority of departures for seven of the eight fish did not exceed 1-hr (with the exception of one 47-day departure), suggesting that when departures occurred, the fish did not travel far. Future efforts will significantly expand the number of receivers at Conch Reef such that fish movement behavior relative to the reserve boundaries can be quantified with increased temporal and spatial resolution. (PDF contains 22 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine reserves, often referred to as no-take MPAs, are defined as areas within which human activities that can result in the removal or alteration of biotic and abiotic components of an ecosystem are prohibited or greatly restricted (NRC 2001). Activities typically curtailed within a marine reserve are extraction of organisms (e.g., commercial and recreational fishing, kelp harvesting, commercial collecting), mariculture, and those activities that can alter oceanographic or geologic attributes of the habitat (e.g., mining, shore-based industrial-related intake and discharges of seawater and effluent). Usually, marine reserves are established to conserve biodiversity or enhance nearby fishery resources. Thus, goals and objectives of marine reserves can be inferred, even if they are not specifically articulated at the time of reserve formation. In this report, we review information about the effectiveness of the three marine reserves in the Monterey Bay National Marine Sanctuary (Hopkins Marine Life Refuge, Point Lobos Ecological Reserve, Big Creek Ecological Reserve), and the one in the Channel Islands National Marine Sanctuary (the natural area on the north side of East Anacapa Island). Our efforts to objectively evaluate reserves in Central California relative to reserve theory were greatly hampered for four primary reasons; (1) few of the existing marine reserves were created with clearly articulated goals or objectives, (2) relatively few studies of the ecological consequences of existing reserves have been conducted, (3) no studies to date encompass the spatial and temporal scope needed to identify ecosystem-wide effects of reserve protection, and (4) there are almost no studies that describe the social and economic consequences of existing reserves. To overcome these obstacles, we used several methods to evaluate the effectiveness of subtidal marine reserves in Central California. We first conducted a literature review to find out what research has been conducted in all marine reserves in Central California (Appendix 1). We then reviewed the scientific literature that relates to marine reserve theory to help define criteria to use as benchmarks for evaluation. A recent National Research Council (2001) report summarized expected reserve benefits and provided the criteria we used for evaluation of effectiveness. The next step was to identify the research projects in this region that collected information in a way that enabled us to evaluate reserve theory relative to marine reserves in Central California. Chapters 1-4 in this report provide summaries of those research projects. Contained within these chapters are evaluations of reserve effectiveness for meeting specific objectives. As few studies exist that pertain to reserve theory in Central California, we reviewed studies of marine reserves in other temperate and tropical ecosystems to determine if there were lessons to be learned from other parts of the world (Chapter 5). We also included a discussion of social and economic considerations germane to the public policy decision-making processes associated with marine reserves (Chapter 6). After reviewing all of these resources, we provided a summary of the ecological benefits that could be expected from existing reserves in Central California. The summary is presented in Part II of this report. (PDF contains 133 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The National Marine Sanctuaries Act (16 U.S.C. 1431, as amended) gives the Secretary of Commerce the authority to designate discrete areas of the marine environment as National Marine Sanctuaries and provides the authority to promulgate regulations to provide for the conservation and management of these marine areas. The waters of the Outer Washington Coast were recognized for their high natural resource and human use values and placed on the National Marine Sanctuary Program Site Evaluation List in 1983. In 1988, Congress directed NOAA to designate the Olympic Coast National Marine Sanctuary (Pub. L. 100-627). The Sanctuary, designated in May 1994, worked with the U.S. Coast Guard to request the International Maritime Organization designate an Area to be Avoided (ATBA) on the Olympic Coast. The IMO defines an ATBA as "a routeing measure comprising an area within defined limits in which either navigation is particularly hazardous or it is exceptionally important to avoid casualties and which should be avoided by all ships, or certain classes of ships" (IMO, 1991). This ATBA was adopted in December 1994 by the Maritime Safety Committee of the IMO, “in order to reduce the risk of marine casualty and resulting pollution and damage to the environment of the Olympic Coast National Marine Sanctuary”, (IMO, 1994). The ATBA went into effect in June 1995 and advises operators of vessels carrying petroleum and/or hazardous materials to maintain a 25-mile buffer from the coast. Since that time, Olympic Coast National Marine Sanctuary (OCNMS) has created an education and monitoring program with the goal of ensuring the successful implementation of the ATBA. The Sanctuary enlisted the aid of the U.S. and Canadian coast guards, and the marine industry to educate mariners about the ATBA and to use existing radar data to monitor compliance. Sanctuary monitoring efforts have targeted education on tank vessels observed transiting the ATBA. OCNMS's monitoring efforts allow quantitative evaluation of this voluntary measure. Finally, the tools developed to monitor the ATBA are also used for the more general purpose of monitoring vessel traffic within the Sanctuary. While the Olympic Coast National Marine Sanctuary does not currently regulate vessel traffic, such regulations are within the scope of the Sanctuary’s Final Environmental Impact Statement/Management Plan. Sanctuary staff participate in ongoing maritime and environmental safety initiatives and continually seek opportunities to mitigate risks from marine shipping.(PDF contains 44 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implementing resource discovery techniques at the National Fairground Archive and Special Collections, University of Sheffield Using Google search Console to track impact and use of collections