969 resultados para Approximate equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this document we explore the issue of $L^1\to L^\infty$ estimates for the solution operator of the linear Schr\"{o}dinger equation, \begin{align*} iu_t-\Delta u+Vu&=0 &u(x,0)=f(x)\in \mathcal S(\R^n). \end{align*} We focus particularly on the five and seven dimensional cases. We prove that the solution operator precomposed with projection onto the absolutely continuous spectrum of $H=-\Delta+V$ satisfies the following estimate $\|e^{itH} P_{ac}(H)\|_{L^1\to L^\infty} \lesssim |t|^{-\frac{n}{2}}$ under certain conditions on the potential $V$. Specifically, we prove the dispersive estimate is satisfied with optimal assumptions on smoothness, that is $V\in C^{\frac{n-3}{2}}(\R^n)$ for $n=5,7$ assuming that zero is regular, $|V(x)|\lesssim \langle x\rangle^{-\beta}$ and $|\nabla^j V(x)|\lesssim \langle x\rangle^{-\alpha}$, $1\leq j\leq \frac{n-3}{2}$ for some $\beta>\frac{3n+5}{2}$ and $\alpha>3,8$ in dimensions five and seven respectively. We also show that for the five dimensional result one only needs that $|V(x)|\lesssim \langle x\rangle^{-4-}$ in addition to the assumptions on the derivative and regularity of the potential. This more than cuts in half the required decay rate in the first chapter. Finally we consider a problem involving the non-linear Schr\"{o}dinger equation. In particular, we consider the following equation that arises in fiber optic communication systems, \begin{align*} iu_t+d(t) u_{xx}+|u|^2 u=0. \end{align*} We can reduce this to a non-linear, non-local eigenvalue equation that describes the so-called dispersion management solitons. We prove that the dispersion management solitons decay exponentially in $x$ and in the Fourier transform of $x$.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis proves certain results concerning an important question in non-equilibrium quantum statistical mechanics which is the derivation of effective evolution equations approximating the dynamics of a system of large number of bosons initially at equilibrium (ground state at very low temperatures). The dynamics of such systems are governed by the time-dependent linear many-body Schroedinger equation from which it is typically difficult to extract useful information due to the number of particles being large. We will study quantitatively (i.e. with explicit bounds on the error) how a suitable one particle non-linear Schroedinger equation arises in the mean field limit as number of particles N → ∞ and how the appropriate corrections to the mean field will provide better approximations of the exact dynamics. In the first part of this thesis we consider the evolution of N bosons, where N is large, with two-body interactions of the form N³ᵝv(Nᵝ⋅), 0≤β≤1. The parameter β measures the strength and the range of interactions. We compare the exact evolution with an approximation which considers the evolution of a mean field coupled with an appropriate description of pair excitations, see [18,19] by Grillakis-Machedon-Margetis. We extend the results for 0 ≤ β < 1/3 in [19, 20] to the case of β < 1/2 and obtain an error bound of the form p(t)/Nᵅ, where α>0 and p(t) is a polynomial, which implies a specific rate of convergence as N → ∞. In the second part, utilizing estimates of the type discussed in the first part, we compare the exact evolution with the mean field approximation in the sense of marginals. We prove that the exact evolution is close to the approximate in trace norm for times of the order o(1)√N compared to log(o(1)N) as obtained in Chen-Lee-Schlein [6] for the Hartree evolution. Estimates of similar type are obtained for stronger interactions as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis aims to develop new numerical and computational tools to study electrochemical transport and diffuse charge dynamics at small scales. Previous efforts at modeling electrokinetic phenomena at scales where the noncontinuum effects become significant have included continuum models based on the Poisson-Nernst-Planck equations and atomic simulations using molecular dynamics algorithms. Neither of them is easy to use or conducive to electrokinetic transport modeling in strong confinement or over long time scales. This work introduces a new approach based on a Langevin equation for diffuse charge dynamics in nanofluidic devices, which incorporates features from both continuum and atomistic methods. The model is then extended to include steric effects resulting from finite ion size, and applied to the phenomenon of double layer charging in a symmetric binary electrolyte between parallel-plate blocking electrodes, between which a voltage is applied. Finally, the results of this approach are compared to those of the continuum model based on the Poisson-Nernst-Planck equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Because there is scientific evidence that an appropriate intake of dietary fibre should be part of a healthy diet, given its importance in promoting health, the present study aimed to develop and validate an instrument to evaluate the knowledge of the general population about dietary fibres. Study design: The present study was a cross sectional study. Methods: The methodological study of psychometric validation was conducted with 6010 participants, residing in ten countries from 3 continents. The instrument is a questionnaire of self-response, aimed at collecting information on knowledge about food fibres. For exploratory factor analysis (EFA) was chosen the analysis of the main components using varimax orthogonal rotation and eigenvalues greater than 1. In confirmatory factor analysis by structural equation modelling (SEM) was considered the covariance matrix and adopted the Maximum Likelihood Estimation algorithm for parameter estimation. Results: Exploratory factor analysis retained two factors. The first was called Dietary Fibre and Promotion of Health (DFPH) and included 7 questions that explained 33.94 % of total variance ( = 0.852). The second was named Sources of Dietary Fibre (SDF) and included 4 questions that explained 22.46% of total variance ( = 0.786). The model was tested by SEM giving a final solution with four questions in each factor. This model showed a very good fit in practically all the indexes considered, except for the ratio 2/df. The values of average variance extracted (0.458 and 0.483) demonstrate the existence of convergent validity; the results also prove the existence of discriminant validity of the factors (r2 = 0.028) and finally good internal consistency was confirmed by the values of composite reliability (0.854 and 0.787). Conclusions: This study allowed validating the KADF scale, increasing the degree of confidence in the information obtained through this instrument in this and in future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of accurate modeling techniques for nanoscale thermal transport is an active area of research. Modern day nanoscale devices have length scales of tens of nanometers and are prone to overheating, which reduces device performance and lifetime. Therefore, accurate temperature profiles are needed to predict the reliability of nanoscale devices. The majority of models that appear in the literature obtain temperature profiles through the solution of the Boltzmann transport equation (BTE). These models often make simplifying assumptions about the nature of the quantized energy carriers (phonons). Additionally, most previous work has focused on simulation of planar two dimensional structures. This thesis presents a method which captures the full anisotropy of the Brillouin zone within a three dimensional solution to the BTE. The anisotropy of the Brillouin zone is captured by solving the BTE for all vibrational modes allowed by the Born Von-Karman boundary conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Purdue Research Foundation. Research project no. 1255. Project Ae-25. This research was supported by the National Advisory Committee for Aeronautics, Washington, D. C., under Contract no. NAW-6465."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A parameterization of mesoscale eddy fluxes in the ocean should be consistent with the fact that the ocean interior is nearly adiabatic. Gent and McWilliams have described a framework in which this can be approximated in L-coordinate primitive equation models by incorporating the effects of eddies on the buoyancy field through an eddy-induced velocity. It is also natural to base a parameterization on the simple picture of the mixing of potential vorticity in the interior and the mixing of buoyancy at the surface. The authors discuss the various constraints imposed by these two requirements and attempt to clarify the appropriate boundary conditions on the eddy-induced velocities at the surface. Quasigeostrophic theory is used as a guide to the simplest way of satisfying these constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various mechanisms have been proposed to explain extreme waves or rogue waves in an oceanic environment including directional focusing, dispersive focusing, wave-current interaction, and nonlinear modulational instability. The Benjamin-Feir instability (nonlinear modulational instability), however, is considered to be one of the primary mechanisms for rogue-wave occurrence. The nonlinear Schrodinger equation is a well-established approximate model based on the same assumptions as required for the derivation of the Benjamin-Feir theory. Solutions of the nonlinear Schrodinger equation, including new rogue-wave type solutions are presented in the author's dissertation work. The solutions are obtained by using a predictive eigenvalue map based predictor-corrector procedure developed by the author. Features of the predictive map are explored and the influences of certain parameter variations are investigated. The solutions are rescaled to match the length scales of waves generated in a wave tank. Based on the information provided by the map and the details of physical scaling, a framework is developed that can serve as a basis for experimental investigations into a variety of extreme waves as well localizations in wave fields. To derive further fundamental insights into the complexity of extreme wave conditions, Smoothed Particle Hydrodynamics (SPH) simulations are carried out on an advanced Graphic Processing Unit (GPU) based parallel computational platform. Free surface gravity wave simulations have successfully characterized water-wave dispersion in the SPH model while demonstrating extreme energy focusing and wave growth in both linear and nonlinear regimes. A virtual wave tank is simulated wherein wave motions can be excited from either side. Focusing of several wave trains and isolated waves has been simulated. With properly chosen parameters, dispersion effects are observed causing a chirped wave train to focus and exhibit growth. By using the insights derived from the study of the nonlinear Schrodinger equation, modulational instability or self-focusing has been induced in a numerical wave tank and studied through several numerical simulations. Due to the inherent dissipative nature of SPH models, simulating persistent progressive waves can be problematic. This issue has been addressed and an observation-based solution has been provided. The efficacy of SPH in modeling wave focusing can be critical to further our understanding and predicting extreme wave phenomena through simulations. A deeper understanding of the mechanisms underlying extreme energy localization phenomena can help facilitate energy harnessing and serve as a basis to predict and mitigate the impact of energy focusing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Within the core accretion scenario of planetary formation, most simulations performed so far always assume the accreting envelope to have a solar composition. From the study of meteorite showers on Earth and numerical simulations, we know that planetesimals must undergo thermal ablation and disruption when crossing a protoplanetary envelope. Thus, once the protoplanet has acquired an atmosphere, not all planetesimals reach the core intact, i.e. the primordial envelope (mainly H and He) gets enriched in volatiles and silicates from the planetesimals. This change of envelope composition during the formation can have a significant effect on the final atmospheric composition and on the formation timescale of giant planets. Aims. We investigate the physical implications of considering the envelope enrichment of protoplanets due to the disruption of icy planetesimals during their way to the core. Particular focus is placed on the effect on the critical core mass for envelopes where condensation of water can occur. Methods. Internal structure models are numerically solved with the implementation of updated opacities for all ranges of metallicities and the software Chemical Equilibrium with Applications to compute the equation of state. This package computes the chemical equilibrium for an arbitrary mixture of gases and allows the condensation of some species, including water. This means that the latent heat of phase transitions is consistently incorporated in the total energy budget. Results. The critical core mass is found to decrease significantly when an enriched envelope composition is considered in the internal structure equations. A particularly strong reduction of the critical core mass is obtained for planets whose envelope metallicity is larger than Z approximate to 0.45 when the outer boundary conditions are suitable for condensation of water to occur in the top layers of the atmosphere. We show that this effect is qualitatively preserved even when the atmosphere is out of chemical equilibrium. Conclusions. Our results indicate that the effect of water condensation in the envelope of protoplanets can severely affect the critical core mass, and should be considered in future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many tissue level models of neural networks are written in the language of nonlinear integro-differential equations. Analytical solutions have only been obtained for the special case that the nonlinearity is a Heaviside function. Thus the pursuit of even approximate solutions to such models is of interest to the broad mathematical neuroscience community. Here we develop one such scheme, for stationary and travelling wave solutions, that can deal with a certain class of smoothed Heaviside functions. The distribution that smoothes the Heaviside is viewed as a fundamental object, and all expressions describing the scheme are constructed in terms of integrals over this distribution. The comparison of our scheme and results from direct numerical simulations is used to highlight the very good levels of approximation that can be achieved by iterating the process only a small number of times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste artigo faz-se uma análise das características distributivas do processo Kaldor-Pasinetti, assumindo-se que o setor governamental incorre em persistentes déficits que podem ser financiados através de diferentes instrumentos, como a emissão de títulos e de moeda. Através dessa abordagem é possível estudar como a atividade governamental afeta a distribuição de renda entre capitalistas e trabalhadores e assim obter generalizações do Teorema de Cambridge em que versões anteriores como as de Steedman (1972), Pasinetti (1989), Dalziel (1991) e Faria (2000) surgem como casos particulares. _________________________________________________________________________________ ABSTRACT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation is devoted to the equations of motion governing the evolution of a fluid or gas at the macroscopic scale. The classical model is a PDE description known as the Navier-Stokes equations. The behavior of solutions is notoriously complex, leading many in the scientific community to describe fluid mechanics using a statistical language. In the physics literature, this is often done in an ad-hoc manner with limited precision about the sense in which the randomness enters the evolution equation. The stochastic PDE community has begun proposing precise models, where a random perturbation appears explicitly in the evolution equation. Although this has been an active area of study in recent years, the existing literature is almost entirely devoted to incompressible fluids. The purpose of this thesis is to take a step forward in addressing this statistical perspective in the setting of compressible fluids. In particular, we study the well posedness for the corresponding system of Stochastic Navier Stokes equations, satisfied by the density, velocity, and temperature. The evolution of the momentum involves a random forcing which is Brownian in time and colored in space. We allow for multiplicative noise, meaning that spatial correlations may depend locally on the fluid variables. Our main result is a proof of global existence of weak martingale solutions to the Cauchy problem set within a bounded domain, emanating from large initial datum. The proof involves a mix of deterministic and stochastic analysis tools. Fundamentally, the approach is based on weak compactness techniques from the deterministic theory combined with martingale methods. Four layers of approximate stochastic PDE's are built and analyzed. A careful study of the probability laws of our approximating sequences is required. We prove appropriate tightness results and appeal to a recent generalization of the Skorohod theorem. This ultimately allows us to deduce analogues of the weak compactness tools of Lions and Feireisl, appropriately interpreted in the stochastic setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slender rotating structures are used in many mechanical systems. These structures can suffer from undesired vibrations that can affect the components and safety of a system. Furthermore, since some these structures can operate in a harsh environment, installation and operation of sensors that are needed for closed-loop and collocated control schemes may not be feasible. Hence, the need for an open-loop non-collocated scheme for control of the dynamics of these structures. In this work, the effects of drive speed modulation on the dynamics of slender rotating structures are studied. Slender rotating structures are a type of mechanical rotating structures, whose length to diameter ratio is large. For these structures, the torsion mode natural frequencies can be low. In particular, for isotropic structures, the first few torsion mode frequencies can be of the same order as the first few bending mode frequencies. These situations can be conducive for energy transfer amongst bending and torsion modes. Scenarios with torsional vibrations experienced by rotating structures with continuous rotor-stator contact occur in many rotating mechanical systems. Drill strings used in the oil and gas industry are an example of rotating structures whose torsional vibrations can be deleterious to the components of the drilling system. As a novel approach to mitigate undesired vibrations, the effects of adding a sinusoidal excitation to the rotation speed of a drill string are studied. A portion of the drill string located within a borewell is considered and this rotating structure has been modeled as an extended Jeffcott rotor and a sinusoidal excitation has been added to the drive speed of the rotor. After constructing a three-degree-of-freedom model to capture lateral and torsional motions, the equations of motions are reduced to a single differential equation governing torsional vibrations during continuous stator contact. An approximate solution has been obtained by making use of the Method of Direct Partition of Motions with the governing torsional equation of motion. The results showed that for a rotor undergoing forward or backward whirling, the addition of sinusoidal excitation to the drive speed can cause an increase in the equivalent torsional stiffness, smooth the discontinuous friction force at contact, and reduce the regions of negative slope in the friction coefficient variation with respect to speed. Experiments with a scaled drill string apparatus have also been conducted and the experimental results show good agreement with the numerical results obtained from the developed models. These findings suggest that the extended Jeffcott rotordynamics model can be useful for studies of rotor dynamics in situations with continuous rotor-stator contact. Furthermore, the results obtained suggest that the drive speed modulation scheme can have value for attenuating drill-string vibrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of oil wells drilling requires additional cares mainly if the drilling is in offshore ultra deep water with low overburden pressure gradients which cause low fracture gradients and, consequently, difficult the well drilling by the reduction of the operational window. To minimize, in the well planning phases, the difficulties faced by the drilling in those sceneries, indirect models are used to estimate fracture gradient that foresees approximate values for leakoff tests. These models generate curves of geopressures that allow detailed analysis of the pressure behavior for the whole well. Most of these models are based on the Terzaghi equation, just differentiating in the determination of the values of rock tension coefficient. This work proposes an alternative method for prediction of fracture pressure gradient based on a geometric correlation that relates the pressure gradients proportionally for a given depth and extrapolates it for the whole well depth, meaning that theses parameters vary in a fixed proportion. The model is based on the application of analytical proportion segments corresponding to the differential pressure related to the rock tension. The study shows that the proposed analytical proportion segments reaches values of fracture gradient with good agreement with those available for leakoff tests in the field area. The obtained results were compared with twelve different indirect models for fracture pressure gradient prediction based on the compacting effect. For this, a software was developed using Matlab language. The comparison was also made varying the water depth from zero (onshore wellbores) to 1500 meters. The leakoff tests are also used to compare the different methods including the one proposed in this work. The presented work gives good results for error analysis compared to other methods and, due to its simplicity, justify its possible application