924 resultados para Apoptotic Cells


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the role of heparan sulfate proteoglycans (HSPGs) in neural lineage differentiation of human mesenchymal stem cells (hMSCs). Several HSPGs were identified as potential new targets controlling neural fate specification and may be applied to the development of improved models to examine and repair brain damage. hMSCs were characterised throughout extended in vitro expansion for neural lineage potential (neurons, astrocytes, oligodendrocytes) and differentiated using terminal differentiation and intermediate sphere formation. Brain damage and neurological disorders caused by injury or disease affect a large number of people often resulting in lifelong disabilities. Multipotent mesenchymal stem cells have a large capacity for self-renewal and provide an excellent model to examine the regulation and contribution of both stem cells and their surrounding microenvironment to the repair of neural tissue damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platinum chemotherapeutic agents such as cisplatin are currently used in the treatment of various malignancies such as lung cancer. However, their efficacy is significantly hindered by the development of resistance during treatment. While a number of factors have been reported that contribute to the onset of this resistance phenotype, alterations in the DNA repair capacity of damaged cells is now recognised as an important factor in mediating this phenomenon. The mode of action of cisplatin has been linked to its ability to crosslink purine bases on the DNA, thereby interfering with DNA repair mechanisms and inducing DNA damage. Following DNA damage, cells respond by activating a DNA-damage response that either leads to repair of the lesion by the cell thereby promoting resistance to the drug, or cell death via activation of the apoptotic response. Therefore, DNA repair is a vital target to improving cancer therapy and reduce the resistance of tumour cells to DNA damaging agents currently used in the treatment of cancer patients. To date, despite the numerous findings that differential expression of components of the various DNA repair pathways correlate with response to cisplatin, translation of such findings in the clinical setting are still warranted. The identification of alterations in specific proteins and pathways that contribute to these unique DNA repair pathways in cisplatin resistant cancer cells may potentially lead to a renewed interest in the development of rational novel therapies for cisplatin resistant cancers, in particular, lung cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major aims of this study were to investigate the effect of an Ironman triathlon on DNA migration in the single cell gel electrophoresis assay, apoptosis and necrosis in the cytokinesis-block micronucleus cytome assay with lymphocytes and on changes of total antioxidant capacity in plasma. Blood samples were taken 2 days (d) before, within 20 min, 1 d, 5 d and 19 d post-race. The level of strand breaks decreased (p<0.05) immediately after the race, then increased (p<0.01) 1 d post-race and declined (p<0.01) until 19 d post-race. Apoptotic and necrotic cells decreased (p<0.01) and the total antioxidant status increased (p<0.01) immediately after the race. The results indicate that ultra-endurance exercise does not cause prolonged DNA damage in well-trained male athletes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The EphB4 receptor tyrosine kinase is over-expressed in a variety of different epithelial cancers including prostate where it has been shown to be involved in survival, migration and angiogenesis. We report here that EphB4 also resides in the nucleus of prostate cancer cell lines. We used in silico methods to identify a bipartite nuclear localisation signal (NLS) in the extracellular domain and a monopartite NLS sequence in the intracellular kinase domain of EphB4. To determine whether both putative NLS sequences were functional, fragments of the EphB4 sequence containing each NLS were cloned to create EphB4NLS-GFP fusion proteins. Localisation of both NLS-GFP proteins to the nuclei of transfected cells was observed, demonstrating that EphB4 contains two functional NLS sequences. Mutation of the key amino residues in both NLS sequences resulted in diminished nuclear accumulation. As nuclear translocation is often dependent on importins we confirmed that EphB4 and importin-α can interact. To assess if nuclear EphB4 could be implicated in gene regulatory functions potential EphB4-binding genomic loci were identified using chromatin immunoprecipitation and Lef1 was confirmed as a potential target of EphB4-mediated gene regulation. These novel findings add further complexity to the biology of this important cancer-associated receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The EphB4 receptor tyrosine kinase is overexpressed in many cancers including prostate cancer. The molecular mechanisms by which this ephrin receptor influences cancer progression are complex as there are tumor-promoting ligand-independent mechanisms in place as well as ligand-dependent tumor suppressive pathways. Methods We employed transient knockdown of EPHB4 in prostate cancer cells, coupled with gene microarray analysis, to identify genes that were regulated by EPHB4 and may represent linked tumor-promoting factors. We validated target genes using qRT-PCR and employed functional assays to determine their role in prostate cancer migration and invasion. Results We discovered that over 500 genes were deregulated upon EPHB4 siRNA knockdown, with integrin β8 (ITGB8) being the top hit (29-fold down-regulated compared to negative non-silencing siRNA). Gene ontology analysis found that the process of cell adhesion was highly deregulated and two other integrin genes, ITGA3 and ITGA10, were also differentially expressed. In parallel, we also discovered that over-expression of EPHB4 led to a concomitant increase in ITGB8 expression. In silico analysis of a prostate cancer progression microarray publically available in the Oncomine database showed that both EPHB4 and ITGB8 are highly expressed in prostatic intraepithelial neoplasia, the precursor to prostate cancer. Knockdown of ITGB8 in PC-3 and 22Rv1 prostate cancer cells in vitro resulted in significant reduction of cell migration and invasion. Conclusions These results reveal that EphB4 regulates integrin β8 expression and that integrin β8 plays a hitherto unrecognized role in the motility of prostate cancer cells and thus targeting integrin β8 may be a new treatment strategy for prostate cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project was a step forward in discovering the potential role of intestinal cell kinase in prostate cancer development. Intestinal cell kinase was shown to be upregulated in prostate cancer cells and altered expression led to changes in key cell survival proteins. This study used in vitro experiments to monitor changes in cell growth, protein and RNA expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer with 650,000 new cases p/a worldwide. HNSCC causes high morbidity with a 5-year survival rate of less than 60%, which has not improved due to the lack of early detection (Bozec et al. Eur Arch Otorhinolaryngol. 2013;270: 2745–9). Metastatic disease remains one of the leading causes of death in HNSCC patients. This review article provides a comprehensive overview of literature over the past 5 years on the detection of circulating tumour cells (CTCs) in HNSCC; CTC biology and future perspectives. CTCs are a hallmark of invasive cancer cells and key to metastasis. CTCs can be used as surrogate markers of overall survival and progression-free survival. CTCs are currently used as prognostic factors for breast, prostate and colorectal cancers using the CellSearch® system. CTCs have been detected in HNSCC, however, these numbers depend on the technique applied, time of blood collection and the clinical stage of the patient. The impact of CTCs in HNSCC is not well understood, and thus, not in routine clinical practice. Validated detection technologies that are able to capture CTCs undergoing epithelial–mesenchymal transition are needed. This will aid in the capture of heterogeneous CTCs, which can be compiled as new targets for the current food and drug administration-cleared CellSearch® system. Recent studies on CTCs in HNSCC with the CellSearch® have shown variable data. Therefore, there is an immediate need for large clinical trials encompassing a suite of biomarkers capturing CTCs in HNSCC, before CTCs can be used as prognostic markers in HNSCC patient management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unique bias-dependent phenomenon in CH3NH3PbI3−xClx based planar perovskite solar cells has been demonstrated, in which the photovoltaic parameters derived from the current–voltage (I–V) curves are highly dependent on the initial positive bias of the I–V measurement. In FTO/CH3NH3PbI3−xClx/Au devices, the open-circuit voltage and short-circuit current increased by ca. 337.5% and 281.9% respectively, by simply increasing the initial bias from 0.5 V to 2.5 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we have developed a new efficient hole transport material (HTM) composite based on poly(3- hexylthiophene) (P3HT) and bamboo-structured carbon nanotubes (BCNs) for CH3NH3PbI3 (MAPbI3) based perovskite solar cells. Compared to pristine P3HT, it is found that the crystallinity of P3HT was significantly improved by addition of BCNs, which led to over one order of magnitude higher conductivity for the composite containing 1–2 wt% BCNs in P3HT. In the meantime, the interfacial charge transfer between the MAPbI3 light absorbing layer and the HTM composite layer based on P3HT/BCNs was two-fold faster than pristine P3HT. More importantly, the HTM film with a superior morphological structure consisting of closely compact large grains was achieved with the composite containing 1 wt% BCNs in P3HT. The study by electrochemical impedance spectroscopy has confirmed that the electron recombination in the solar cells was reduced nearly ten-fold with the addition of 1 wt% carbon nanotubes in the HTM composite. Owing to the superior HTM film morphology and the significantly reduced charge recombination, the energy conversion efficiency of the perovskite solar cells increased from 3.6% for pristine P3HT to 8.3% for P3HT/(1 wt% BCNs) with a significantly enhanced open circuit voltage (Voc) and fill factor (FF). The findings of this work are important for development of new HTM for high performance perovskite solar cells.