947 resultados para Apolipoprotein-CIII transgenic mice
Resumo:
High density lipoproteins (HDLs) play a role in two processes that include the amelioration of atheroma formation and the centripetal flow of cholesterol from the extrahepatic organs to the liver. This study tests the hypothesis that the flow of sterol from the peripheral organs to the liver is dependent upon circulating HDL concentrations. Transgenic C57BL/6 mice were used that expressed variable amounts of simian cholesteryl ester-transfer protein (CETP). The rate of centripetal cholesterol flux was quantitated as the sum of the rates of cholesterol synthesis and low density lipoprotein-cholesterol uptake in the extrahepatic tissues. Steady-state concentrations of cholesterol carried in HDL (HDL-C) varied from 59 to 15 mg/dl and those of apolipoprotein AI from 138 to 65 mg/dl between the control mice (CETPc) and those maximally expressing the transfer protein (CETP+). There was no difference in the size of the extrahepatic cholesterol pools in the CETPc and CETP+ animals. Similarly, the rates of cholesterol synthesis (83 and 80 mg/day per kg, respectively) and cholesterol carried in low density lipoprotein uptake (4 and 3 mg/day per kg, respectively) were virtually identical in the two groups. Thus, under circumstances where the steady-state concentration of HDL-C varied 4-fold, the centripetal flux of cholesterol from the peripheral organs to the liver was essentially constant at approximately 87 mg/day per kg. These studies demonstrate that neither the concentration of HDL-C or apolipoprotein AI nor the level of CETP activity dictates the magnitude of centripetal cholesterol flux from the extrahepatic organs to the liver, at least in the mouse.
Resumo:
Translational control is a major form of regulating gene expression during gametogenesis and early development in many organisms. We sought to determine whether the translational repression of the protamine 1 (Prm1) mRNA is necessary for normal spermatid differentiation in mice. To accomplish this we generated transgenic animals that carry a Prm1 transgene lacking its normal 3' untranslated region. Premature translation of Prm1 mRNA caused precocious condensation of spermatid nuclear DNA, abnormal head morphogenesis, and incomplete processing of Prm2 protein. Premature accumulation of Prm1 within syncytial spermatids in mice hemizygous for the transgene caused dominant male sterility, which in some cases was accompanied by a complete arrest in spermatid differentiation. These results demonstrate that correct temporal synthesis of Prm1 is necessary for the transition from nucleohistones to nucleoprotamines.
Resumo:
This study examines the question of whether apolipoprotein E (apoE) alters steady-state concentrations of plasma cholesterol carried in low density lipoproteins (LDL-C) by acting as a competitive inhibitor of hepatic LDL uptake or by altering the rate of net cholesterol delivery from the intestinal lumen to the liver. To differentiate between these two possibilities, rates of cholesterol absorption and synthesis and the kinetics of hepatic LDL-C transport were measured in vivo in mice with either normal (apoE+/+) or zero (apoE-/-) levels of circulating apoE. Rates of cholesterol absorption were essentially identical in both genotypes and equaled approximately 44% of the daily dietary load of cholesterol. This finding was consistent with the further observation that the rates of cholesterol synthesis in the liver (approximately 2,000 nmol/h) and extrahepatic tissues (approximately 3,000 nmol/h) were also essentially identical in the two groups of mice. However, the apparent Michaelis constant for receptor-dependent hepatic LDL-C uptake was markedly lower in the apoE-/- mice (44 +/- 4 mg/dl) than in the apoE+/+ animals (329 +/- 77 mg/dl) even though the maximal transport velocity for this uptake process was essentially the same (approximately 400 micrograms/h per g) in the two groups of mice. These studies, therefore, demonstrate that apoE-containing lipoproteins can act as potent competitive inhibitors of hepatic LDL-C transport and so can significantly increase steady-state plasma LDL-C levels. This apolipoprotein plays no role, however, in the regulation of cholesterol absorption, sterol biosynthesis, or hepatic LDL receptor number, at least in the mouse.
Resumo:
Two endocytic receptors, the low density lipoprotein (LDL) receptor (LDLR) and the LDLR-related protein (LRP), are thought to act in concert in the hepatic uptake of partially metabolized dietary lipoproteins, the chylomicron remnants. We have evaluated the role of these two receptors in the hepatic metabolism of chylomicron remnants in normal mice and in LDLR-deficient [LDLR (-/-)] mice. The rate of chylomicron remnant removal by the liver was normal up to 30 min after intravenous injection of chylomicrons into LDLR (-/-) mice and was unaffected by receptor-associated protein (RAP), a potent inhibitor of ligand binding to LRP. In contrast, endocytosis of the remnants by the hepatocytes, measured by their accumulation in the endosomal fraction and by the rate of hydrolysis of component cholesteryl esters, was dramatically reduced in the absence of the LDLR. Coadministration of RAP prevented the continuing hepatic removal of chylomicron remnants in LDL (-/-) mice after 30 min, consistent with blockade of the slow endocytosis by a RAP-sensitive process. Taken together with previous studies, our results are consistent with a model in which the initial hepatic removal of chylomicron remnants is primarily mediated by mechanisms that do not include LDLR or LRP, possibly involving glycosaminoglycan-bound hepatic lipase and apolipoprotein E. After the remnants bind to these alternative sites on the hepatocyte surface, endocytosis is predominantly mediated by the LDLR and also by a slower and less efficient backup process that is RAP sensitive and therefore most likely involves LRP.
Resumo:
The focus of the Children's Vaccine Initiative is to encourage the discovery of technology that will make vaccines more readily available to developing countries. Our strategy has been to genetically engineer plants so that they can be used as inexpensive alternatives to fermentation systems for production of subunit antigens. In this paper we report on the immunological response elicited in vivo by using recombinant hepatitis B surface antigen (rHBsAg) purified from transgenic tobacco leaves. The anti-hepatitis B response to the tobacco-derived rHBsAg was qualitatively similar to that obtained by immunizing mice with yeast-derived rHBsAg (commercial vaccine). Additionally, T cells obtained from mice primed with the tobacco-derived rHBsAg could be stimulated in vitro by the tobacco-derived rHBsAg, yeast-derived rHBsAg, and by a synthetic peptide that represents part of the a determinant located in the S region (139-147) of HBsAg. Further support for the integrity of the T-cell epitope of the tobacco-derived rHBsAg was obtained by testing the ability of the primed T cells to proliferate in vitro after stimulation with a monoclonal anti-idiotype and an anti-idiotype-derived peptide, both of which mimic the group-specific a determinant of HBsAg. In total, we have conclusively demonstrated that both B- and T-cell epitopes of HBsAg are preserved when the antigen is expressed in a transgenic plant.
Resumo:
Neuropsychiatric complications are common in patients with chronic hepatitis C undergoing treatment with interferon alpha. These side effects include alterations of mood, cognition, and neuroendocrine function and are unpredictable. In a number of neurological disorders characterized by neuropsychiatric symptoms and cognitive dysfunction, inheritance of an apolipoprotein E (APOE) epsilon4 allele is associated with adverse neuropsychiatric outcomes. The authors present evidence that the APOE genotype may influence a patient's neuropsychiatric response to interferon alpha treatment. The inheritance of APOE genotypes was examined in 110 patients with chronic hepatitis C treated with interferon alpha. A retrospective investigation was conducted by assessing the rates of psychiatric referral and neuropsychiatric symptoms experienced during treatment along with other complaints indicating psychological distress. A highly statistically significant association was seen between APOE genotypes and interferon-induced neuropsychiatric symptoms. Patients with an epsilon4 allele were more likely to be referred to a psychiatrist and had more neuropsychiatric symptoms during antiviral treatment than those without an epsilon4 allele. Additionally, patients with an epsilon4 allele were more likely to experience irritability or anger and anxiety or other mood symptoms. These data demonstrate that an individual's APOE genotype may influence the neuropsychiatric response to antiviral therapy with interferon alpha. Prospective studies evaluating the importance of APOE in susceptibility to interferon alpha-induced neuropsychiatric complications are needed. Moreover, pathways involving APOE should be considered in understanding the pathophysiology of interferon alpha-induced neuropsychiatric complications.
Resumo:
Although immune responses leading to rejection of transplantable tumours have been well studied, requirements for epithelial tumour rejection are unclear. Here, we use human growth hormone (hGH) expressed in epithelial cells (skin keratinocytes) as a model neo-self antigen to investigate the consequences of antigen presentation from epithelial cells. Mice transgenic for hGH driven from the keratin 14 promoter express hGH in skin keratinocytes. This hGH-transgenic skin is not rejected by syngeneic non-transgenic recipients, although an antibody response to hGH develops in grafted animals. Systemic immunization of graft recipients with hGH peptides, or local administration of stimulatory anti-CD40 antibody, induces temporary macroscopic graft inflammation, and an obvious dermal infiltrate of inflammatory cells, but not graft rejection. These results suggest that a neo-self antigen expressed in somatic cells in skin can induce an immune response that can be enhanced further by induction of specific immunity systemically or non-specific immunity locally. However, immune responses do not always lead to rejection, despite induction of local inflammatory changes. Therefore, in vitro immune responses and in vivo delayed type hypersensitivity are not surrogate markers for immune responses effective against epithelial cells expressing neoantigens.
Resumo:
Lysosomal acid lipase (LAL) hydrolyzes cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in the cell. The downstream metabolites of these compounds serve as hormonal ligands for nuclear receptors and transcription factors. Genetic ablation of the lal gene in the mouse caused malformation of macrophages and inflammation-triggered multiple pathogenic phenotypes in multiple organs. To assess the relationship between macro phages and lal(-/-) pathogenic phenotypes, a macrophage-specific doxycycline-inducible transgenic system was generated to induce human LAL (hLAL) expression in the lal(-/-) genetic background under control of the 7.2-kb c-fins promoter/intron2 regulatory sequence. Doxycycline-induced hLAL expression in macrophages significantly ameliorated aberrant gene expression, inflammatory cell (neutrophil) influx, and pathogenesis in multiple organs. These studies strongly support that neutral lipid metabolism in macrophages contributes to organ inflammation and pathogenesis.
Resumo:
Statins possess anti-inflammatory effects that may contribute to their ability to slow atherogenesis, whereas nitric oxide (NO) also influences inflammatory cell adhesion. This study aimed to determine whether a novel NO-donating pravastatin derivative, NCX 6550 [(1S-[1∝(ßS*,dS*),2∝,6a∝,8ß-(R*),8a∝]]-1,2,6,7,8,8a-hexahydro-ß,δ,6-trihydroxy-2-methyl-8-(2-methyl-1-oxobutoxy)-1-naphthalene-heptanoic acid 4-(nitrooxy)butyl ester)], has greater anti-inflammatory properties compared with pravastatin in normal and atherosclerotic apolipoprotein E receptor knockout (ApoE-/-) mice. C57BL/6 and ApoE-/- mice were administered pravastatin (40 mg/kg), NCX 6550 (48.5 mg/kg), or vehicle orally for 5 days. Ex vivo studies assessed splenocyte adhesion to arterial segments and splenocyte reactive oxygen species (ROS) generation. NCX 6550 significantly reduced splenocyte adhesion to artery segments in both C57BL/6 (8.8 ± 1.9% versus 16.6 ± 6.7% adhesion; P < 0.05) and ApoE-/- mice (9.3 ± 2.9% versus 23.4 ± 4.6% adhesion; P < 0.05) concomitant with an inhibition of endothelial intercellular adhesion molecule-1 expression. NCX 6550 also significantly reduced phorbol 12-myristate 13-acetate-induced ROS production that was enhanced in isolated ApoE-/- splenocytes. Conversely, pravastatin had no significant effects on adhesion in normal or ApoE-/- mice but reduced the enhanced ROS production from ApoE-/- splenocytes. In separate groups of ApoE-/- mice, NCX 6550 significantly enhanced endothelium-dependent relaxation to carbachol in aortic segments precon-tracted with phenylephrine (-logEC50, 6.37 ± 0.37) compared with both vehicle-treated (-logEC50, 5.81 ± 0.15; P < 0.001) and pravastatin-treated (-logEC50, 5.57 ± 0.45; P < 0.05) mice. NCX 6550 also significantly reduced plasma monocyte chemoattractant protein-1 levels (648.8 pg/ml) compared with both vehicle (1191.1 pg/ml; P < 0.001) and pravastatin (847 ± 71.0 pg/ml; P < 0.05) treatment. These data show that NCX 6550 exerts superior anti-inflammatory actions compared with pravastatin, possibly through NO-related mechanisms.
Resumo:
Leishmania major parasites reside and multiply in late endosomal compartments of host phagocytic cells. Immune control of Leishmania growth absolutely requires expression of inducible Nitric Oxide Synthase (iNOS/NOS2) and subsequent production of NO. Here, we show that CD11b+ CD11c+ Ly-6C+ MHC-II+ cells are the main iNOS-producing cells in the footpad lesion and in the draining lymph node of Leishmania major-infected C57BL/6 mice. These cells are phenotypically similar to iNOS-producing inflammatory DC (iNOS-DC) observed in the mouse models of Listeria monocytogenes and Brucella melitensis infection. The use of DsRed-expressing parasites demonstrated that these iNOS-producing cells are the major infected population in the lesions and the draining lymph nodes. Analysis of various genetically deficient mouse strains revealed the requirement of CCR2 expression for the recruitment of iNOS-DC in the draining lymph nodes, whereas their activation is strongly dependent on CD40, IL-12, IFN-gamma and MyD88 molecules with a partial contribution of TNF-alpha and TLR9. In contrast, STAT-6 deficiency enhanced iNOS-DC recruitment and activation in susceptible BALB/c mice, demonstrating a key role for IL-4 and IL-13 as negative regulators. Taken together, our results suggest that iNOS-DC represent a major class of Th1-regulated effector cell population and constitute the most frequent infected cell type during chronic Leishmania major infection phase of C57BL/6 resistant mice.
Resumo:
AIMS: Cognitive decline in Alzheimer's disease (AD) patients has been linked to synaptic damage and neuronal loss. Hyperphosphorylation of tau protein destabilizes microtubules leading to the accumulation of autophagy/vesicular material and the generation of dystrophic neurites, thus contributing to axonal/synaptic dysfunction. In this study, we analyzed the effect of a microtubule-stabilizing compound in the progression of the disease in the hippocampus of APP751SL/PS1M146L transgenic model. METHODS: APP/PS1 mice (3 month-old) were treated with a weekly intraperitoneal injection of 2 mg/kg epothilone-D (Epo-D) for 3 months. Vehicle-injected animals were used as controls. Mice were tested on the Morris water maze, Y-maze and object-recognition tasks for memory performance. Abeta, AT8, ubiquitin and synaptic markers levels were analyzed by Western-blots. Hippocampal plaque, synaptic and dystrophic loadings were quantified by image analysis after immunohistochemical stainings. RESULTS: Epo-D treated mice exhibited a significant improvement in the memory tests compared to controls. The rescue of cognitive deficits was associated to a significant reduction in the AD-like hippocampal pathology. Levels of Abeta, APP and ubiquitin were significantly reduced in treated animals. This was paralleled by a decrease in the amyloid burden, and more importantly, in the plaque-associated axonal dystrophy pathology. Finally, synaptic levels were significantly restored in treated animals compared to controls. CONCLUSION: Epo-D treatment promotes synaptic and spatial memory recovery, reduces the accumulation of extracellular Abeta and the associated neuritic pathology in the hippocampus of APP/PS1 model. Therefore, microtubule stabilizing drugs could be considered therapeutical candidates to slow down AD progression. Supported by FIS-PI12/01431 and PI15/00796 (AG),FIS-PI12/01439 and PI15/00957(JV)
Resumo:
The aim of this study was to evaluate the structural and molecular effects of antiangiogenic therapies and finasteride on the ventral prostate of senile mice. 90 male FVB mice were divided into: Young (18 weeks old) and senile (52 weeks old) groups; finasteride group: finasteride (20mg/kg); SU5416 group: SU5416 (6 mg/kg); TNP-470 group: TNP-470 (15 mg/kg,) and SU5416+TNP-470 group: similar to the SU5416 and TNP-470 groups. After 21 days, prostate ventral lobes were collected for morphological, immunohistochemical and Western blotting analyses. The results demonstrated atrophy, occasional proliferative lesions and inflammatory cells in the prostate during senescence, which were interrupted and/or blocked by treatment with antiangiogenic drugs and finasteride. Decreased AR and endostatin reactivities, and an increase for ER-α, ER-β and VEGF, were seen in the senile group. Decreased VEGF and ER-α reactivities and increased ER-β reactivity were verified in the finasteride, SU5416 groups and especially in SU5416+TNP-470 group. The TNP-470 group showed reduced AR and ER-β protein levels. The senescence favored the occurrence of structural and/or molecular alterations suggesting the onset of malignant lesions, due to the imbalance in the signaling between the epithelium and stroma. The SU5416+TNP-470 treatment was more effective in maintaining the structural, hormonal and angiogenic factor balance in the prostate during senescence, highlighting the signaling of antiproliferation via ER-β.
Resumo:
In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr-/- mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr-/- mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr-/- mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr-/- mice showed no significant changes in beta-cell mass, but lower islet-duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr-/- mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion.
Resumo:
Lutein (LT) is a carotenoid obtained by diet and despite its antioxidant activity had been biochemically reported, few studies are available concerning its influence on the expression of antioxidant genes. The expression of 84 genes implicated in antioxidant defense was quantified using quantitative reverse transcription polymerase chain reaction array. DNA damage was measured by comet assay and glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) were quantified as biochemical parameters of oxidative stress in mouse kidney and liver. cDDP treatment reduced concentration of GSH and increased TBARS, parameters that were ameliorated in treatment associated with LT. cDDP altered the expression of 32 genes, increasing the expression of GPx2, APC, Nqo1 and CCs. LT changed the expression of 37 genes with an induction of 13 mainly oxygen transporters. In treatments associating cDDP and LT, 30 genes had their expression changed with a increase of the same genes of the cDDP treatment alone. These results suggest that LT might act scavenging reactive species and also inducing the expression of genes related to a better antioxidant response, highlighting the improvement of oxygen transport. This improved redox state of the cell through LT treatment could be related to the antigenotoxic and antioxidant effects observed.
Resumo:
Pancreatic β-cells are highly sensitive to suboptimal or excess nutrients, as occurs in protein-malnutrition and obesity. Taurine (Tau) improves insulin secretion in response to nutrients and depolarizing agents. Here, we assessed the expression and function of Cav and KATP channels in islets from malnourished mice fed on a high-fat diet (HFD) and supplemented with Tau. Weaned mice received a normal (C) or a low-protein diet (R) for 6 weeks. Half of each group were fed a HFD for 8 weeks without (CH, RH) or with 5% Tau since weaning (CHT, RHT). Isolated islets from R mice showed lower insulin release with glucose and depolarizing stimuli. In CH islets, insulin secretion was increased and this was associated with enhanced KATP inhibition and Cav activity. RH islets secreted less insulin at high K(+) concentration and showed enhanced KATP activity. Tau supplementation normalized K(+)-induced secretion and enhanced glucose-induced Ca(2+) influx in RHT islets. R islets presented lower Ca(2+) influx in response to tolbutamide, and higher protein content and activity of the Kir6.2 subunit of the KATP. Tau increased the protein content of the α1.2 subunit of the Cav channels and the SNARE proteins SNAP-25 and Synt-1 in CHT islets, whereas in RHT, Kir6.2 and Synt-1 proteins were increased. In conclusion, impaired islet function in R islets is related to higher content and activity of the KATP channels. Tau treatment enhanced RHT islet secretory capacity by improving the protein expression and inhibition of the KATP channels and enhancing Synt-1 islet content.