936 resultados para Angular distortion
Resumo:
The Gibbs energy of mixing for the system Fe3O4-FeAl2O4 was determined at 1573 K using a gas-metal-oxide equilibration technique. Oxide solid solution samples were equilibrated with Pt foils under controlled CO+CO2 gas streams. The equilibrium iron concentration in the foil was determined by chemical analysis. The cation distribution between tetrahedral and octahedral sites in the spinel crystal can be calculated from site-preference energies and used as an alternate method of determining some thermodynamic properties, including the Gibbs energy of mixing. The solvus occurring at low temperatures in the system Fe3C4-FeAl2C4 was used to derive the effect of lattice distortion due to cation size difference on the enthalpy of mixing and to obtain a better approximation to the measured thermodynamic quantities.
Resumo:
Solid solutions of Fe304-FeV204 and Fe304-FeCr204 were prepared and equilibrated with Pt under controlled streams of CO/CO, gas mixtures at 1673 K. The concentration of Fe in Pt was used to determine the activity of Fe304 in the solid solutions. The activity of the second component was calculated by Gibbshhem integration. From these data, the Gibbs energy of mixing was derived for both systems. The experimental results and theoretical values which are determined from calculated cation distribution compare favorably in the case of vanadite solid solutions but not in the case of chromite solid solutions. The difference is attributed to a heat term arising from lattice distortion due to cation size difference. The positive heat of mixing will give rise to a miscibility gap in the system Fe304-FeCr204 at lower temperatures.
Resumo:
This paper considers the high-rate performance of source coding for noisy discrete symmetric channels with random index assignment (IA). Accurate analytical models are developed to characterize the expected distortion performance of vector quantization (VQ) for a large class of distortion measures. It is shown that when the point density is continuous, the distortion can be approximated as the sum of the source quantization distortion and the channel-error induced distortion. Expressions are also derived for the continuous point density that minimizes the expected distortion. Next, for the case of mean squared error distortion, a more accurate analytical model for the distortion is derived by allowing the point density to have a singular component. The extent of the singularity is also characterized. These results provide analytical models for the expected distortion performance of both conventional VQ as well as for channel-optimized VQ. As a practical example, compression of the linear predictive coding parameters in the wideband speech spectrum is considered, with the log spectral distortion as performance metric. The theory is able to correctly predict the channel error rate that is permissible for operation at a particular level of distortion.
Resumo:
Pulse retardation method of Breit and Tuve has been modified to record continuously the equivalent height as well as the intensity of reflections from the ionosphere. Synchronized pulses are transmitted, and the received ground pulse and the reflected pulses, after amplification and suitable distortion, are applied to the focusing cylinder of a cathode ray tube the horizontal deflecting plates of which are connected to a synchronized linear time base circuit. The pattern on the screen is composed of a bright straight line corresponding to the time base with dark gaps corresponding to the received pulses. The distance between the initial points of the gaps represents retardation while the widths of the gaps correspond to the intensity of the pulses. The pattern is photographed on a vertically moving film. One of the first few records taken at Bangalore on 4 megacycles is reproduced. It shows, among other things, that the less retarded component of magneto-ionic splitting from the F layer is present most of the time. Whenever the longer retardation component does occur, it has stronger intensity than the former. Towards the late evening hours, just before disappearing, when the F layer rises and exhibits magnetoionic splitting, the intensity of the less retarded component is extremely low compared with the other component.
Resumo:
We present a fractal coding method to recognize online handwritten Tamil characters and propose a novel technique to increase the efficiency in terms of time while coding and decoding. This technique exploits the redundancy in data, thereby achieving better compression and usage of lesser memory. It also reduces the encoding time and causes little distortion during reconstruction. Experiments have been conducted to use these fractal codes to classify the online handwritten Tamil characters from the IWFHR 2006 competition dataset. In one approach, we use fractal coding and decoding process. A recognition accuracy of 90% has been achieved by using DTW for distortion evaluation during classification and encoding processes as compared to 78% using nearest neighbor classifier. In other experiments, we use the fractal code, fractal dimensions and features derived from fractal codes as features in separate classifiers. While the fractal code is successful as a feature, the other two features are not able to capture the wide within-class variations.
Resumo:
The compositional evolution in sputter deposited LiCoO2 thin films is influenced by process parameters involved during deposition. The electrochemical performance of these films strongly depends on their microstructure, preferential orientation and stoichiometry. The transport process of sputtered Li and Co atoms from the LiCoO2 target to the substrate, through Ar plasma in a planar magnetron configuration, was investigated based on the Monte Carlo technique. The effect of sputtering gas pressure and the substrate-target distance (dst) on Li/Co ratio, as well as, energy and angular distribution of sputtered atoms on the substrate were examined. Stable Li/Co ratios have been obtained at 5 Pa pressure and dst in the range 5−11 cm. The kinetic energy and incident angular distribution of Li and Co atoms reaching the substrate have been found to be dependent on sputtering pressure. Simulations were extended to predict compositional variations in films prepared at various process conditions. These results were compared with the composition of films determined experimentally using x-ray photoelectron spectroscopy (XPS). Li/Co ratio calculated using XPS was in moderate agreement with that of the simulated value. The measured film thickness followed the same trend as predicted by simulation. These studies are shown to be useful in understanding the complexities in multicomponent sputtering.
Resumo:
It is pointed out that the change in refractive index with temperature of a crystal is different from what is calculated from the accompanying change in volume and the piezo-optic coefficients. The difference, which is a pure temperature effect, is explained as being due to the change in polarizability of the atoms produced by a change in the amplitude of vibration. The polarizability (α) can be expanded as a Taylor series in the changes of the distance (r) between the atoms and it is found that while the piezo-optic coefficient depends only on ∂α/∂r, the pure temperature effect is a function of ∂ 2 a/∂r 2. Making use of the experimental data, the values of a and its first two derivatives can be determined. These values are foundto be of the same order as those deduced from the intensities of Rayleigh and Raman scattering of light. The theory predicts that dn/dT should vary as the coefficient of cubical expansion at different temperatures and this is verified to be true. Finally, calculations are made of the thermo- and piezo-optic coefficients, considering the electrostatic interaction between the atoms. These do not adequately explain the observed facts, since no provision is made for the distortion of electron atmospheres around the atoms and the consequent changes in polarizability.
Resumo:
VLBI observations at 6 cm reported of several weak radio cores of normal and Seyfert galaxies, of radio sources which have jets or a head tail morphology as well as some stronger cores of flat spectrum galaxies from the NRAO-Bonn "S 4", survey. Nearly all sources were detected at an angular resolution of approximately 15 milli arc s. Some of the sources are resolved at this level.
Resumo:
The transmission loss (TL) performance of spherical chambers having single inlet and multiple outlet is obtained analytically through modal expansion of acoustic field inside the spherical cavity in terms of the spherical Bessel functions and Legendre polynomials. The uniform piston driven model based upon the impedance [Z] matrix is used to characterize the multi-port spherical chamber. It is shown analytically that the [Z] parameters are independent of the azimuthal angle (phi) due to the axisymmetric shape of the sphere; rather, they depend only upon the polar angle (theta) and radius of the chamber R(0). Thus, the effects of relative polar angular location of the ports and number of outlet ports are investigated. The analytical results are shown to be in good agreement with the 3D FEA results, thereby validating the procedure suggested in this work.
Resumo:
By means of N-body simulations we investigate the impact of minor mergers on the angular momentum and dynamical properties of the merger remnant. Our simulations cover a range of initial orbital characteristics and gas-to-stellar mass fractions (from 0 to 20%), and include star formation and supernova feedback. We confirm and extend previous results by showing that the specific angular momentum of the stellar component always decreases independently of the orbital parameters or morphology of the satellite, and that the decrease in the rotation velocity of the primary galaxy is accompanied by a change in the anisotropy of the orbits. However, the decrease affects only the old stellar population, and not the new population formed from gas during the merging process. This means that the merging process induces an increasing difference in the rotational support of the old and young stellar components, with the old one lagging with respect to the new. Even if our models are not intended specifically to reproduce the Milky Way and its accretion history, we find that, under certain conditions, the modeled rotational lag found is compatible with that observed in the Milky Way disk, thus indicating that minor mergers can be a viable way to produce it. The lag can increase with the vertical distance from the disk midplane, but only if the satellite is accreted along a direct orbit, and in all cases the main contribution to the lag comes from stars originally in the primary disk rather than from stars in the satellite galaxy. We also discuss the possibility of creating counter-rotating stars in the remnant disk, their fraction as a function of the vertical distance from the galaxy midplane, and the cumulative effect of multiple mergers on their creation.
Resumo:
An equimolar mixture of Ni(NO(3))(2)center dot 6H(2)O and pyridine-2-aldehyde with two equivalents of NaN(3) in methanol in the presence of NaOMe resulted in the formation of light green precipitate which upon crystallization from dimethylformamide (DMF) yielded light green single crystals [{Ni(2)Na(2)(pic)(4)(N(3))(2)(H(2)O)(2)(MeOH)}center dot MeOH center dot 3H(2)O](n) (1) and [{Ni(2)Na(2)(pic)(4)(N(3))(2)(H(2)O)(4)}center dot 2DMF center dot H(2)O](n) (2) (pic = pyridine-2-carboxylate) at room temperature and high temperature (100 degrees C), respectively. Variable temperature magnetic studies revealed the existence of overall ferromagnetic behaviour with J approximate to + 10 cm(-1) and D approximate to -2 to -7 cm(-1) for 1 and 2, respectively. Negative D values as well as variation of D upon slight distortion of structure by varying reaction temperature were observed. The X-band Electron Paramagnetic Resonance (EPR) spectra of both 2 and 3 were recorded below 50 K. The structural distortion was also implicated from the EPR spectra. Density Functional Theory (DFT) calculations on both complexes were performed in two different ways to corroborate the magnetic results. Considering only Ni(2)(II) dimeric unit, results were J = + 20.65 cm(-1) and D = -3.16 cm(-1) for 1, and J = +24.56 cm(-1) and D = -4.67 cm(-1) for 2. However, considering Ni(2)(II)Na(2)(I) cubane as magnetic core the results were J = +16.35 cm(-1) (1), +19.54 cm(-1) (2); D = -3.05 cm(-1) (1), -4.25 cm(-1) (2).
Resumo:
An exact classical theory of the motion of a point dipole in a meson field is given which takes into account the effects of the reaction of the emitted meson field. The meson field is characterized by a constant $\chi =\mu /\hslash $ of the dimensions of a reciprocal length, $\mu $ being the meson mass, and as $\chi \rightarrow $ 0 the theory of this paper goes over continuously into the theory of the preceding paper for the motion of a spinning particle in a Maxwell field. The mass of the particle and the spin angular momentum are arbitrary mechanical constants. The field contributes a small finite addition to the mass, and a negative moment of inertia about an axis perpendicular to the spin axis. A cross-section (formula (88 a)) is given for the scattering of transversely polarized neutral mesons by the rotation of the spin of the neutron or proton which should be valid up to energies of 10$^{9}$ eV. For low energies E it agrees completely with the old quantum cross-section, having a dependence on energy proportional to p$^{4}$/E$^{2}$ (p being the meson momentum). At higher energies it deviates completely from the quantum cross-section, which it supersedes by taking into account the effects of radiation reaction on the rotation of the spin. The cross-section is a maximum at E $\sim $ 3$\cdot $5$\mu $, its value at this point being 3 $\times $ 10$^{-26}$ cm.$^{2}$, after which it decreases rapidly, becoming proportional to E$^{-2}$ at high energies. Thus the quantum theory of the interaction of neutrons with mesons goes wrong for E $\gtrsim $ 3$\mu $. The scattering of longitudinally polarized mesons is due to the translational but not the rotational motion of the dipole and is at least twenty thousand times smaller. With the assumption previously made by the present author that the heavy partilesc may exist in states of any integral charge, and in particular that protons of charge 2e and - e may occur in nature, the above results can be applied to charged mesons. Thus transversely polarised mesons should undergo a very big scattering and consequent absorption at energies near 3$\cdot $5$\mu $. Hence the energy spectrum of transversely polarized mesons should fall off rapidly for energies below about 3$\mu $. Scattering plays a relatively unimportant part in the absorption of longitudinally polarized mesons, and they are therefore much more penetrating. The theory does not lead to Heisenberg explosions and multiple processes.
Resumo:
Gd1.95Eu0.4M0.01O3 (M = Li+ Na+ K+) nanophosphors have been synthesized by a low temperature solution combustion (LSC) method. Powder X-ray diffraction pattern (PXRD), scanning electron microscopy (SEM), UV-vis and photoluminescence (PL) measurements were carried out to characterize their structural and luminescent properties. The excitation and emission spectra indicated that the phosphor could be well excited by UV light (243 nm) and emit red light about 612 nm. The effect of alkali co-dopant on PL properties has been examined. The results showed that incorporation of Li+, Na+ and K+ in to Gd2O3:Eu3+ phosphor would lead to a remarkable increase of photoluminescence. The PL intensity of Gd2O3:Eu3+ phosphor was improved evidently by co-doping with Li+ ions whose radius is less than that of Gd3+ and hardly with Na+, K+ whose radius is larger than that of Gd3+. The effect of co-dopants on enhanced luminescence was mainly regarded as the result of a suitable local distortion of crystal field surrounding the Eu3+ activator. These results will play an important role in seeking some more effective co-dopants. (C) 2011 Published by Elsevier B.V.
Resumo:
The variation in temperature and concentration plays a crucial role in predicting the final microstructure during solidification of a binary alloy. Most of the experimental techniques used to measure concentration and temperature are intrusive in nature and affect the flow field. In this paper, the main focus is laid on in-situ, non-intrusive, transient measurement of concentration and temperature during the solidification of a binary mixture of aqueous ammonium chloride solution (a metal-analog system) in a top cooled cavity using laser based Mach-Zehnder Interferometric technique. It was found from the interferogram, that the angular deviation of fringe pattern and the total number of fringes exhibit significant sensitivity to refractive index and hence are functions of the local temperature and concentration of the NH4Cl solution inside the cavity. Using the fringe characteristics, calibration curves were established for the range of temperature and concentration levels expected during the solidification process. In the actual solidification experiment, two hypoeutectic solutions (5% and 15% NH4Cl) were chosen. The calibration curves were used to determine the temperature and concentration of the solution inside the cavity during solidification of 5% and 15% NH4Cl solution at different instants of time. The measurement was carried out at a fixed point in the cavity, and the concentration variation with time was recorded as the solid-liquid interface approached the measurement point. The measurement exhibited distinct zones of concentration distribution caused by solute rejection and Rayleigh Benard convection. Further studies involving flow visualization with laser scattering confirmed the Rayleigh Benard convection. Computational modeling was also performed, which corroborated the experimental findings. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the walls of the defective multiwall carbon nanotube (MWCNT), and give possible mechanism for the formation of defective structure. A generalized model has been proposed for the MWCNT. which consists of (a) catalyst part, (b) embryo part and (c) full grown part. We claim that the weak embryo portion of the MWCNT, is structurally undeveloped. The stress due to pressure imbalance between inside and outside of the MWCNT during growth along with axial load at the embryo portion causes distortion, which is the source of bending and making the walls of the MWCNT off-concentric. At the later stage the stressed embryo retain the distorted structure and get transformed into fully gown defective CNT. Published by Elsevier B.V.